Radio Altimeter effectiveness and CFIT
How can technology be used to effectively diminish CFIT and ALA incidents?
Air travel is one of the safest means of traveling from one location to another in the world. Without air traffic, the business world would come to a screeching halt. Although businesses can transfer mass amounts of digital communications DATA, thus eliminating much of the demand on mail and fax transmissions of just a decade ago, businesses organizations can still not transfer products, mail, personnel, and other hard goods through electronic blips on the internet. Travel still relies on airliners and cargo air-busses which fill the skies around the world and around the clock. The experts are agreed that global commercial air traffic will grow at an average 5% per year over the next 20 years. This means that traffic will double in 15 years and will practically triple by the end of the second decade of the next century. (Interavia, 1999)
The air travel industry is built on principles which have established and maintained its safety records. These principles have been the foundation of the industry. One of these principles is that of multiple redundant systems. Once an airliner is in the air, the forces of physics and gravity will control its flight path. If there is a mistake, or a failed system, no one can ask gravity and inertia to take a break while the problem is fixed. So each airplane is built with multiple control redundancies in order to prepare for any possible problem.
A second principle, which can work counter to the first, is that the pilot and crew are always in final control of the aircraft. (Luccio, 2001) If the systems malfunction, the pilot can override them to control the craft. If the conditions so warrant, the pilot can turn off individual controls in order to maintain control of the air craft. Neither pilots nor air line companies want to have an accident from a failed system, or poor weather conditions in which an automated system locked out the crew and the resulting disaster was due to a "technical malfunction."
During the past 4 decades, the aviation industry has realized that the combination of equipment and personnel needs to be actively managed. The following chart tracks the growing body of knowledge which has accumulated in the aviation industry regarding air safety.
Perceived Accident Main Causality
Focus of Airline Safety Efforts
Focus of Manufacturer's Safety Efforts
1960's
Accidents result from individual pilot error, mainly attributed to a lack of basic flying skills
Selection of appropriate psychomotor skills. Handling training oriented toward handling proficiency.
Designing more reliable aircraft.
1970's
Accidents result from individual pilot error, mainly attributed to a lark of technical proficiency.
Selection of appropriate psychomotor and cognitive skills. Intense use of (increasing fidelity) simulators.
Designing more reliable and easy to fly aircraft. Built in redundancy; fail safe and fail operational concepts. More automation assistance to flight control
1980's
Accidents result from cockpit crew errors mainly attributed to team synergy failures and to a poor management of resources available in the cockpit.
Selection of "right stuff" with proper cooperation skills. Crew resource management training
Focus on crew workload. Reducing pilot involvement in direct flight control actions (fly-by-wire stability, more and more auto flight capabilities; providing for more and more error protections (GPWS).
1990's
Every accident is a failure or organization" (Prof K.R. Andrews). Front line operator behavior is strongly (even if not totally) determined by systemic forces (selection, training, procedures, cultures, work conditions, organization structures). Human error is not a failure per se, but an intrinsic component of Cognitive processes. Accidents result from a loss of control of the crew (and the larger team) on their error management process.
Fourth -- and fifth- generation CRM training: -situation awareness augmentation, error management strategies, and facilitation of metacognition. --Company Resource Management.
Providing for situation awareness augmentation and decision aids (Navigational Display, Centralized Monitoring, ECAM procedures). More automatic protections against consequences of undetected errors: EGPWs, Closer communication with airlines: --Prevention strategies. (Adapted from Amalberti and Sarter, 2000)
For these reasons, discussions of overcoming specific safety and technical issues which are commonplace in the aviation industry must be a combined discussion of technology and human interface with the same. While capable of operating the plane in 80% of the situations, and through 80% of a flight, the technology cannot replace the need for human judgment that pilots the craft through the other 20% of a flight. Until technology advances to the creation of artificial intelligence...
Airplane Crash Investigations Accident investigations are very different in regards to individual crashes. This paper examines the investigation of two plane crashes, Dallas Airlines Flight 191 and United Airlines Flight 173. The Dallas investigation did have good accessibility to the crash site with multiple first responding organizations from local municipalities, but with a slow reaction time. Meanwhile, United Airlines Flight 173 was clearly caused by pilot error, as the plane ran
Improper Ergonomics caused USAir 1493 and SkyWest 5569 Accident Accident Investigation: Improper Ergonomics was the Cause Ergonomics was derived from two Greek words: ergon which means work, nomoi, on the hand means natural laws, in creating a word with the meaning, the science of work and an individual's relationship to that work. Another related definition according to International Ergonomics Association describe Ergonomics as the scientific discipline that deals with the understanding of
On the hand, some plans may be slow to respond to the pilot's commands; complicating the piloting process, much like a sports car, for example, that under steers or a truck that over steers (Personal Communication, 2010). Bay contends that training on more than one plane of a particular model would prove to be a positive practice for airlines to implement. Bay asserts that the following questions need to be
Either the pilot is poorly trained, overloaded with duties and unable to pay attention or the helicopter is poorly designed," said Rhett Flater, executive director of the American Helicopter Society International. "If you have two professionally trained pilots, both instrument-trained, on board the helicopter, the statistics have shown you dramatically increase the safety and decrease the chance of pilot error" (Peveto, 2009). In addition, stringent safety and maintenance requirements must
Air traffic has continued to increase and it now constitutes a considerable proportion of the travelling public. The amount of long-hour flights has increased significantly. Based on the International Civil Aviation authority, air traffic can be anticipated to double amid till 2020. Airline travel, especially over longer distances, makes air travelers vulnerable to numerous facets that will impact their health and well-being. Particularly, the speed with which influenza spreads and
2. Approach Clearances According to the article, "Back door IFR: When stratus happens and you didn't file, you'll need to sweet talk your way into the system. Here are some practical tips to do that safely" (2006 obtaining an IFR clearance, literally on the fly, does not constitute not a to be taken for granted privilege. Approximately 15 years ago, U.S. pilots almost lost a significant portion of this flexibility, when the
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now