Leveraging Information Systems for Disaster Management
In today's digital age, natural as well as man-made disaster management has become an easier task. Several IT features are at our disposal, which can help in both prevention and recovery from disaster. Information technology advances such as satellite communication, the Internet, remote sensing, geographic information system (GIS), etc. have proven extremely valuable in hazard reduction planning and execution processes (Vyas & Desai, 2007). IT has been employed in the fields of business disaster recovery, continuity planning, risk management, and continuous monitoring.
Risk management
Generally, activities in emergency and risk management are separated into two categories: pre-event (preparation, mitigation) and 2) post-event (recovery, response). In the preparation stage, simulation and modeling exercises are crucial and can facilitate prevention, mitigation and adaptation. In the field of geographic information systems, applications in water-resource management have most effectively utilized its analytical abilities for developing simulation runs and biophysical models (like Hydraulic and Hydrological Models (HEC-RAS andMIKE11). When integrated, these systems can forecast flood behavior, by deriving inputs of different terrain, hydro-meteorological datasets, and land use or land cover; in a way, these function as SDSS (Spatial Decision Support Systems) (Zlatanovaa, Ghawanab, Kaurb & Neuvelc, 2014).
The planning stage is generally initiated with locating and identification of possible disaster sites (at-risk places). Via a GIS, threats are recognized, and evaluation of potential disasters'/emergencies' consequences is begun. Hazard-mapping (flood zones, earthquake faults, avalanche, landslide, etc.) is conducted, taking into consideration key infrastructure (residential areas, buildings, hospitals, schools, streets, storage facilities, power lines, pipelines, etc.) at risk, followed by formulation of preparedness, response, mitigation, and potential recovery requirements by relevant authorities. This process makes clear the lives, environmental values, and property at great risk from possible disaster/emergency. Public safety authorities can identify and concentrate on the places wherein mitigation will be required, places where response should be reinforced, the focus of preparedness, and required recovery efforts. GIS eases this process, through enabling planners to look at suitable spatial data combinations by means of computer-generated mapping (Stephenson and Peter, 1997).
At the response stage, the abovementioned information combined with non-spatial and spatial infrastructural information may be utilized for improving response efficiency. Response units' route optimization on the basis of real-time information of disaster-affected regions can be resource- and time-efficient while responding. The disaster-hit territories' satellite images offer information regarding the area and extent of impact. In case of floods, Volume or Depth data from earlier-run simulations can be utilized by the agencies concerned to ascertain possible water volume/depth in flood regions, as well as the likelihood of other regions getting impacted because of the water reaching those regions (Zlatanovaa et al., 2014).
ii. Continuous monitoring
In the last 10 years, nations and regions have significantly advanced in EWS (Early Warning Systems) development and implementation. A major part of this improvement is because of better information and communication technology (ICT), improved monitoring and observational systems, and greater public awareness with regard to emergency risk reduction's importance. An example that demonstrates the value of extending EWS coverage is that of Bangladesh, which has, currently, a two-day cyclone warning system at hand for enabling individuals to evacuate from homes and withdraw to storm shelters many hours prior to cyclones making landfall, thereby appreciably decreasing death toll. Three-hundred thousand people lost their lives to the Cyclone Bhola in 1970, in comparison to 3,000 deaths by Cyclone Sidrin 2007; both events were reported by authorities to be of similar magnitudes. Even where risks that have greater complexity and longer development times (e.g., droughts), EWS helps with keeping death toll low, across regions like Africa's Sub-Sahara (Carabine & Jones, 2015). There are EWS technology examples that include weather forecasting -- A large number of nations today have in place, early warning techniques that utilize weather forecasts, giving important details days, weeks, even months ahead and communicating warnings to related local stakeholders. The systems are grounded on high-tech weather models; they are particularly helpful in preparation for extreme climate.
With rapid, worldwide spread of mobile networks and cell phones, cell-phone technology has become another means that is progressively adopted for providing warning and coordinating preparedness activities; SMS (Short Message Service), in particular, is used extensively for disseminating mass messages. One example where SMS has been integrated into disaster warning systems is Japan - on detecting early earthquake signs, Japanese agencies disseminate SMS warnings to every single registered cell phone user in the nation. Crowd-sourced data also finds increasing use, with greater number of people having access to the internet and ICTs (like, mobile phones)....
The disaster management plan will minimize the potentialities of the disaster in the areas as follows: (1) Minimizing potential economic loss; (2) Decreasing potential exposures; (3) Reducing the probability of occurrence; (4) Reduction of disruptions to operations; (5) providing an orderly recovery; (6) minimizing insurance premiums; (7) reduction of reliance on certain key individuals; (8) protecting organizational assets; (9) ensuring the safety of personnel and customer; (10) Reducing disruptions
Disaster and Technology Technology In Disaster Management Information technology is the basis of effective decision making. Access to reliable and accurate information is important after a disaster since it opens, share and coordinate system. Access to reliable, accurate and timely information at all levels of society is crucial immediately before, during, and after a disaster. In preparedness for disaster communication needs to anticipate a situation which involves ICT element including; broadcasting radio, television,
A b) Event management People react differently when faced with disaster, some may respond and follow the disaster response plan without a problem, other may forget key instructions and follow their own plans, the most dangerous situations however, are when individuals freeze and fail to act when disaster strikes. Response before, during and after a disaster can be the difference between life and death. (Bridegan et al., 1997) Failure to heed
Information Technology holds great promise for improving the way a government serves its citizens in various services it conducts to the citizens. This rapid adoption of information technology has produced substantial benefits to the citizens, tax payers, and businesses alike. It is therefore recommended for every particular government to develop digital services to streamline all its operations. One area where governments should enhance its key functions is the establishment of
Magma and gasses building up just below the surface before an eruption can cause a bulge many miles in diameter. Since they are so large, these swells cannot be seen by the naked eye (Kerr, 2003). Satellite-borne radars alert volcanologists when such bulges appear. The satellites monitor global positioning (GPS) devices on the ground, using triangulation to mark whether the ground is bulging. Yet, again, the lack of a
Technology and Disaster Management Technological improvements have seen the face of disaster management in the recent past change significantly from the times when disasters use to strike unawares, the response was uncoordinated, recovery was unprofessionally doe and generally the damages left behind after disasters, be they natural or man made, were of colossal measures. The role of communication in disaster management is the focus of this particular section of the paper,
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now