Verified Document

Universal Serial Bus USB Term Paper

Universal Serial Bus State of Technology

Universal Serial Bus (USB) is a plug-and-play interface between a computer and add-on devices (such as audio players, joysticks, keyboards, telephones, scanners, and printers). With USB, a new device can be added to a computer without having to add an adapter card or turn the computer off. The first USB 1.1 peripheral bus standard was developed in 1997 and the technology was made available without charge for all computer and device vendors (USB, TechTarget). Starting in 1996, a few computer manufacturers started including USB 1.1 support in their new machines. However, it wasn't until the release of the best-selling Apple iMac in 1998 that USB became widespread.

USB 1.1's speed was insufficient to support the most demanding PC user applications, such as digital image creation and web publishing, where multiple high-speed peripherals will be running simultaneously (Universal Serial Bus - FAQs). As a result, work began on USB 2.0 which would deliver speed forty times faster than USB 1.1. The USB 2.0 spec was released at WinHEC in April 2000. Another new USB standard, USB On-The-Go (OTG), made an initial appearance in the market in 2002 to address the growing need for devices to communicate directly with each other when a PC is not available (USB On-The-Go, USB Implementers Forum). The On-The-Go Supplement addresses this need for mobile interconnectivity by allowing a USB peripheral to have: limited host capability to communicate with selected other USB peripherals, a small USB connector to fit the mobile form factor and lower power features to preserve battery life.

General Operation and Environment

The intent of the USB architecture is to provide a replacement for the aging serial and parallel ports on existing computers (Rehak, 1999). Those ports impose limitations such as cable length, cable size and complexity. Unlike older ports, USB uses one interrupt request no matter how many devices are in use and it offers instant plug and play for its device set. After loading the device software the computer user can plug the physical device anywhere in the USB network and it will work. The unit can be plugged in to a different port each time with no consequence. And, the flow of information in USB is more like an advanced data network protocol than the traditional PC serial bus data flow. It provides a way to funnel information from many devices into and out of a computer system in an orderly manner.

USB uses a hub architecture (Rehak, 1999). Hubs are what are connected, hubs connect to hubs. A maximum of 127 devices can be attached to a hub. The USB architecture is defined as an intermediate speed bus. With USB 1.1, the bus operates at either 12 megabits per second or 1.5 megabits per second, depending on the attached device. USB 2.0 is an external bus that supports data rates up to 480 megabits per second. USB 2.0 is fully compatible with USB 1.1 and uses the same cables and connectors (Universal Serial Bus - FAQs). With a speed of 12 megabits per second, the typical devices attached to serial and parallel ports are excellent candidates for USB attachment (Rehak, 1999). These include most printers, modems, pointing devices, scanners, cameras and like devices. Game paddles, joysticks, steering wheels etc. can be attached to the USB port. Devices such as monitors, speakers and LANS will require the higher speed option. Devices that do not need a lot of power, like digital cameras, can draw their power from the bus. That means they operate without a wall plug.

USB Availability

USB 2.0 quickly replaced USB 1.1 which had already become a ubiquitous connector on PC systems for such peripherals as keyboards, mice, joysticks, removable storage, printers and scanners. According to research firm In-Stat/MDR (PCs, peripherals and consumer electronics getting on the Universal Serial Bus), PC manufacturers adopted the new standard very quickly; to the extent that all desktop PCs shipped by the end of 2003 will be USB 2.0-enabled. As the standard is adopted by notebook PCs and, eventually, PC peripherals and consumer electronics devices, the total number of USB-enabled devices will increase from approximately...

In-Stat/MDR has also found that:
PC peripherals that require higher speeds have begun to adopt USB 2.0, including hard disk drives, optical drives, and scanners. Other PC peripheral devices, including printers, hubs, and PC cameras, will also adopt USB 2.0 in time, but have been slow to do so because they have slower speed requirements.

Consumer electronics devices will adopt higher speed USB 2.0 at a slower rate than PC peripherals, but most will eventually adopt the new standard. Many of the devices in this category are not as closely tied to the PC as the peripheral market, and often do not have higher speed requirements. The emergence of less expensive embedded USB 2.0 solutions, as opposed to discrete solutions, will help to drive its adoption in these types of markets

Refer to the figure below for a summary of USB adoption and a forecast for the future.

Supporters of the Technology

Universal Serial Bus was developed by a complex of companies (Compaq, Digital, IBM, Intel, Microsoft, NEC and Northern Telecom) with the aim of using a single interface to connect accessory peripheral units, thus replacing parallel and serial ports as well as other inputs and output on computers (USB, TechTarget). In 1995 the USB Implementers Forum (USB IF) was set up to support and speed up use of USB peripheral units by the market and consumers (About USB Implementers Forum, Inc.). USBIF is a non-profit corporation founded by the group of companies that developed the initial Universal Serial Bus specification.

The USB 2.0 spec was developed by a team of seven industry-leading companies, collectively named the USB 2.0 Promoter Group (Universal Serial Bus - FAQs). The group consisted of Compaq, Hewlett Packard, Intel, Lucent, Microsoft, NEC, and Philips. Companies contributing to USB On-The- Go include Advanced-Connectek, Cypress Semiconductor, Ericsson, Hewlett-Packard, Insilicon, Intel, Marunix, MCCI, Microsoft, Mitsumi, Molex, Motorola, NEC, Nokia, On-spec, Opti, Palm, Phillips, Qualcomm, Softconnex, Texas Instruments and Transdimension (USB On-The-Go).

Standards Competition

The Firewire, or IEEE 1394 standard, by Apple, is another standard that defines a high speed serial bus. Originally USB 2.0 focused on connecting PC peripherals and IEEE 1394's target was audio/visual consumer electronic devices such as digital camcorders, digital VCRs, DVDs, and digital televisions. Therefore, the two connections initially differed in primarily in application focus. However, upgrades to both technologies began interface competition between the two (Overington, 2002).

According to Overington, USB has in its favor the backwards-compatibility with USB 1.1 hardware and native support from Intel which will ensure a rapid uptake from hardware manufacturers. Peripheral manufacturers have already released USB 2.0 PCI cards and hubs, while motherboards based on Intel's i845 chipset all ship with on-board USB 2.0.

However, Overington believes that Firewire has many advantages over USB. For example, FireWires's transfer rates of 800 megabits per second outpace USB'a 480 megabits per second.

IEEE 1394b also benefits from stronger signal sent along the copper cable, which enables devices to be located up to 100m down the line. Unlike USB, FireWire is a multi-master bus system, more than one device initiating transfers can be active in the system.

Furthermore, IEEE 1394b has added robust control codes and scrambling of both control and data symbols to minimize cross-talk. Despite its technology advantages, the fact that IEEE 1394 is still not supported on-board by PC motherboard manufacturers will prevent it from gaining a decisive upper hand over USB.

Apple outraged chip and system manufacturers in early 1999 when it proposed a licence fee of $US1 per port for FireWire systems. The scheme was later dropped, but not before Intel shifted its weight behind the royalty-free USB standard.

Conclusions

The prognosis for the future of USB is quite good. Wide-spread support from PC, notebook and peripheral…

Sources used in this document:
Bibliography

About USB Implementers Forum, Inc. Retrieved November 15, 2003 from USB Implementors Forum Web Site: http://www.usb.org/info/

Overington, M. (2002, July 17). Speed test. APC Magazine. Retrieved November 15,2003 from APC Magazine Web Site: http://www.apcmag.com/apc/v3.nsf/0/2B6542579D78DD07CA256D44001A5F12

PCs, peripherals and consumer electronics getting on the universal serial bus. (2003, February 26). Retrieved November 15, 2003 from In-Stat/MDR Web Site: http://www.instat.com/press.asp?ID=554&sku=IN030579MI

Rehank, K. (1999, April 24). "USB Explained: Is the universal serial bus for you?"
Retrieved November 15, 2003 from North Orange County Computer Club.Web Site: http://www.noccc.org/bytes/articles/v01/326.html
USB. Retrieved November 15, 2003 from TechTarget Web Site: http://whatis.techtarget.com/definition/0,sid9_gci214166,00.html
Universal Serial Bus - FAQs. Retrieved November 15, 2003 from Intel Web Site: http://www.intel.com/technology/usb/faq.htm#Q4
USB On-The-Go. Retrieved November 15, 2003 from USB Implementers Forum Web Site: http://www.usb.org/developers/onthego
Cite this Document:
Copy Bibliography Citation

Related Documents

Buyers Guide to Flatbed Scanners
Words: 1743 Length: 5 Document Type: Term Paper

Buyer's Guide To Flatbed Scanners Getting digital images is easy with a right scanner. Nowadays, printing productions and websites demand huge numbers of digital images for easy modification, interactive presentation, and professional look of their final products. A reliable and affordable scanner helps out the need both for home and corporation requirement. Among different types of scanner, there is a high preference for flatbed scanner for its working performance, size, and

Free Wireless Networks
Words: 5062 Length: 20 Document Type: Term Paper

Free Wireless Networks Since the construction of the information Superhighway, its' use to distribute information has become phenomenal. Information gathering and dissemination is the most valuable asset for a business to succeed. Demands for more and more efficient means of connecting to the Internet have driven exponential technological advances. So much so that the craze to connect has gone wireless and with this technology an entirely new set of issues, concerns

What Are the Purposes of Computer Hardware and Software
Words: 669 Length: 2 Document Type: Case Study

Network Administration Computer hardware and software Computer software refers to a collection of procedures, computer programs and codes that perform different functions on a computer system. Software systems are often classified into system software, programming software, and application software. Any physical device used in or with a computer is referred to as computer hardware. A computer display monitor, a CD-ROM and a printer are all examples of hardware. Functions of computer hardware The following

Peripherals and Backup Strategies and Devices
Words: 701 Length: 2 Document Type: Essay

computer hardware that are attached to a computer in order to increase its capabilities. In some cases, peripheral is a term that used to refer to computer devices that are optional in nature instead of those that are usually required by principle. There are various kinds of computer peripherals that not only differ from the way they are connected to the computer i.e. internally or externally but also differ

Computer Essentials Define Input Device,
Words: 580 Length: 2 Document Type: Term Paper

Today the prevalent technologies for printing output from a computer include what are called "non-impact" technologies or inkjet and laser-based printing devices. There are an equally wide range of devices for storage of data and resulting information generated on PCs and laptops. Hard disk drives that often include multiple storage platters where data is written to and read from using read/write heads enclosed in the hard disk enclosure are commonplace.

Information Technology IT Communications and Data
Words: 3297 Length: 10 Document Type: Essay

Communications This age is often referred to as the information era: the last two decades have given birth to some of the most staggering advancements that the human race has ever been capable of -- advancements which have changed the way that we live, do business, stay healthy, fight disease and defend our nation. It's vital to have a comprehensive and concrete understanding of some of the more basic concepts

Sign Up for Unlimited Study Help

Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.

Get Started Now