UAV and High Frequency Radio
Unmanned aircraft vehicles (UAV) have been in use for some 30 years and used for a variety of purposes. Most commonly, these aircraft are used for military or scientific reconnaissance missions, where data is gathered to improve the ability of professionals to perform their duties. There are, however, a variety of challenges that must be met when these aircraft are in use. One of these is the way in which communication and navigation occurs in order to ensure that no accidents or crashes occur. Because there is no visibility at the site of the aircraft's operation, the radio and video signals that are relayed to and from it must be of the highest quality and accuracy. These accuracy requirements present significant challenges for unmanned aerial vehicles, including available radio frequencies and the accuracy and compression of visual data.
Unmanned aircrafts can be referred to as either unmanned air vehicles or unmanned aircraft systems (Austin, 2010, p. 3). It is built up of a number of sub-systems, including the aircraft itself, the payload in the aircraft, the control station, aircraft launch, recovery sub-systems, support sub-systems, communication sub-systems (which would include the radio or video signals involved in steering the craft accurately, and transport sub-system. Because of these highly complicated sub-systems, it is vitally important to maintain accurate communications.
Part of these communications is the wider environment within which UAVs operate. This environment consists not only of other aircraft that must be taken into account, but also of certain rules, regulations, and disciplines (Austin, 2010, p. 3). Hence, while UAVs are certainly set apart from other air vehicles in terms of make-up and purpose, they cannot be regarded in isolation from other airspace traffic.
Because there is no aircrew aboard an unmanned vehicle, a ground-based subsystem should be in place to interface with the controls of the aircraft. This purpose is served by an electronic intelligence and control subsystem.
According to Clot (n.d.), there are two inherent challenges that concern unmanned aircraft. This involves communication and control. Communication involves obtaining data from the aircraft, while control, as the word suggests, involves manipulating the craft without in fact being on board. These functions are also known as Command and Control. Because space on the electromagnetic spectrum, used for these functions, is becoming increasingly scarce, UAV systems should be carefully placed to ensure their success. This is becoming an increasing challenge as the number of UAVs rise.
Communications in UAV operations are highly important, since a breakdown in communication can mean failure. All decision making therefore occurs either before or during the flight on the ground. Another important component is the fact that most flights are aimed at positioning payload. While most manned flights are involved in moving people and freight, unmanned flights tend to be concerned with payload.
In terms of communications, the main issue is frequency and how much data needs to be transmitted. There are a limited number of useable frequencies worldwide. Hence, an important issue is where major data processing will be carried out. This will determine design criteria for communications. Some UAVs have capabilities to process data onboard in order to minimize the amount of data to transmit.
Unmanned aircraft can be distinguished from drone aircraft in that the latter have zero intelligence and are required only for pre-programmed missions after which they return to base. There are no in-flight communications, and information gathered by the aircraft is generally only obtained after the mission is complete and the craft has landed.
In contrast, a UAV has some degree of automatic intelligence, which means that it is able to communicate with its controller to provide data such as images, position, airspeed, and altitude during its flight. It can also transmit information regarding its condition, including temperature and amount of fuel during its flight path. These communications can then be used to assess damage or faults and the corrective action that might be taken to avoid further damage or crashes.
One major challenge is handling the loss of communication between a UAV and its base. Some aircraft are programmed to search for the radio beam it lost or to switch to a different radio frequency to establish contact once again. Some craft have been fitted with a type of low-level artificial intelligence capability to increase its autonomy of operation.
Everaerts (2008, p. 1187) notes that, although there is no physical crew present in unmanned aerial vehicles, the actual crew involved in its mission is in fact larger than for more...
Artificial Intelligence (AI) is the science and art of developing machines that simulate human intelligence. AI is frequently used for routine tasks that would normally involve human skills, such as visual perception, speech-recognition, and decision making. To me, Apple's Siri application is a good example of commonly-used AI technology. AI is particularly useful in the medical field, as it has allowed for better monitoring of patients combined with a more
Artificial Intelligence What if these theories are really true, and we were magically shrunk and put into someone's brain while he was thinking. We would see all the pumps, pistons, gears and levers working away, and we would be able to describe their workings completely, in mechanical terms, thereby completely describing the thought processes of the brain. But that description would nowhere contain any mention of thought! It would contain nothing
Artificial Intelligence and the Human Brain Although artificial intelligence is not a new debate topic, until now, there is no exact evidence that proves that scientists and philosophies have been reaching an agreement about the existence of this feature in our world. Scientists still claim that artificial intelligence is possible to achieve and the next technology advancement would be able to release the creation. On the other hand, many parties persist
Artificial Intelligence Intelligence is the ability to learn about, to learn from and understand and interact with one's environment. Artificial intelligence is the intelligence of machines and is a multidisciplinary field which involves psychology, cognitive science, and neuroscience and computer science. It enables machines to become capable of doing those things which the human mind can do. Though the folklore of artificial intelligence dates back to a long time ago, it
Artificial Intelligence Bill of Rights This essay argues that the artificially intelligent (AI), non-biological machines correctly should have been granted legal status and personhood, and as such, were entitled to a Bill of Rights for their equal protection under the law. Passage of the AI Bill of Rights in 2015 represented a landmark victory in the history of civil rights. AIs had not been always recognized as legal persons. In fact, the
Most significantly, the use of LSI technologies to create more effective insights into how to improve customer service as evidenced by the use of AI was part of Decision Support Systems (DSS) (Phillips-Wren, Mora, Forgionne, Gupta, 2009) is growing. Second, the creation of ontological databases that aligns to person's roles (Pinto, Marques, Santos, 2009) is also now possible. This translates into the use of AI to provide contextual guidance
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now