Thomas Kuhn (1922-1996) was an American scientist, historian and philosopher who wrote a controversial book in 1962 called The Structure of Scientific Revolutions. Kuhn was born in Cincinnati, Ohio and from an early age expressed interest in science, particularly physics; obtaining his BS degree in physics from Harvard in 1943. He stayed at Harvard for his MS and PhD, and credits the period of the late 1940s in helping him develop his views on the history and philosophy of science. He taught at Berkeley until 1964, and then moved to Princeton from 1964 to 1979, moving to MIT until 1991. Kuhn died in 1996 from lung cancer, but left a long tradition of scientific articles, books and student input (Fuller, 2000)
This book introduced the term "paradigm shift" and made several claims surrounding the manner in which we understand scientific knowledge, process that knowledge, and use that knowledge to come up with new ideas and approaches to problems. The overall thesis of the book is that periodically, science undergoes paradigm shifts that are punctuated in structure. Instead of science progressing in a linear fashion -- e.g. one small step leading to an improvement and other step, etc., the paradigm shifts are like "tipping points" that expand knowledge in ways that are non-geometric. These shifts also open up new approaches to ways of looking at problems, of understanding issues, and viewing concepts and proofs (scientific truth) in new and rather remarkable ways. In essence, then, we cannot know scientific truth at any given moment because it is continually evolving -- and it cannot be established only through objective (quantitative) criteria, but instead by a generalized consensus of the scientific community. Over time, this consensus changes based on theory, application, and certainly in the global world of enhanced communication, more rapidly and with a larger audience. Looking at it from a micro-viewpoint, there are often competing paradigms within the scientific community -- arguments through journals, experiments to validate competing views; which means that we cannot be objective in our view of science, but must account for a number of qualitative and subjective perspectives that may be proven correct or incorrect over time. Science is then continually in flux -- or crisis, and it is this crisis that propels science forward (Hairston, 1982).
The transition from a paradigm in crisis to a new one from which a new tradition of normal science can emerge is far from a cumulative process, one achieved by an articulation or extension of the old paradigm. Rather it is a reconstruction of the field from new fundamentals, a reconstruction that changes some of the fields' most elementary theoretical generalizations as well as man of its paradigm methods and applications. During the transition period there will be a large but never complete overlap between the problems that can be solved by the old and by the new paradigm. But there will also be a decisive difference…. when the transition is complete, the profession will have changed its view of the field, its methods and its goals (Kuhn, 2012).
Science is essentially based on observation and experimentation. All research begins with some type of question -- and thus research is the process of answers questions. Scientific research, though, is a systematic process in methodology -- the collection and analyzation of that information to increase understandings of that study. Regardless of the discipline then, the idea of research requires a hypothesis based on a theoretical what if, a specific plan to investigate that theory, and a way to investigate that can be extrapolated to others based on repetition of the experiment or rigid enough data to use in like situations (Leedy & Ormrod, 2009). There are different methods of experimentation; generally numerically based (quantitative), verbally based (qualitative), or a mixed method approach. Each discipline tends to focus on a particular example; and there have been ongoing battles between qualitative and quantitative research (witness the continual nature of paradigm shifts), but all research needs a question to answer or a hypothesis to prove or disprove. This overall method is called the scientific method and is a systematic and step-by-step process that is formal, objective, and structured to the point where it can be duplicated and provides new truths. The idea of the paradigm shift and the evolution of scientific knowledge means that we are continually looking for new truths based on what has been discovered, discussed and new inventions or new ways of looking at scientific problems (McCaig & Dahlberg, 2010).
Taken further, in science there are...
This was based on what little normative science could be carried out through crossing different animals. It was an accepted fact to many in the animal husbandry business. The first creative breakthrough occurred in 1868 when a young Swiss physician, Freiderich Meischer, isolated something that had not been seen before. This creative scientist isolated nucleic acid, a compound found in both DNA and RNA (Fredholm). This discovery sparked a
Education Reform A Paradigm Shift in Education Reform Basic ideas are not confined to one branch of science or one area of academic study; if it is a truly worthwhile idea it can be expanded to include many different area of science. The scientific method was at first thought to only be useful to those scientists who knew that they could find definitive answers such as mathematicians and physicists. The hard sciences
What they had regarded as the most certain of all theories turned out to be in need of serious revision. In reaction, they resolved never again to bestow their faith in scientific truth unconditionally. Skepticism, not certainty, became their watchword. (ibid) The implication of Kuhn's work was that science was seen to be dependent on history. It was no longer superior to historical analysis but could only be understood within the
Research can be added to the paradigms through discovery, without an actual paradigm shift, or the paradigm can be completely replaced through crisis. Scientific revolutions are sometimes so great that it can be said that with the advent of a paradigm shift, the world itself changes. However, as Kuhn (1996) sustains, the world does not actually change every time a paradigm shift occurs, although it can be said that the
If the anomaly resists explanation within the paradigm, the paradigm is altered to include the anomaly. Therefore, to lead to a true crisis and to form the foundation of a scientific revolution, an anomaly must conflict with the basic tenets of the paradigm. In addition, the anomaly cannot be answered by normal research and problem-solving skills within the paradigm, regardless of the modifications. Therefore, it can be said that crises
The concept of the paradigm shift, however, negates the very idea that truth could ever actually be reached. Each paradigm -- which only gives way to another paradigm, leaving all knowledge and understanding ultimately tied to some semblance of foundational assumptions. There is no getting beyond the assumptions, as they are a necessary component (in Kuhn's view) of establishing any sort of causal understanding at all. Science is then, taking
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now