Thermo Therapy
Application of healing thermal agents to certain body areas that feel wounded or dysfunction is heat treatment. The main use of a heat treatment is to help alleviate pain, support muscle repose, increase function of the tissue cells, improve blood flow, and remove poison from cells and to increase the extensibility of soft tissues. Superficial and deep are the two types of heat treatment. Superficial heat treatments apply heat to the exterior part of the body. Heat aimed at certain inner tissues through ultrasound or by electric current is deep heat treatment. Heat treatments are favorable before exercise, giving a limbering up result to the soft tissues involved. Heat treatment using conduction as a form of heat transfer in hot pacts is very common. Damp heat packs are easily available in most hospitals, physical treatment centers and sports teaching rooms.
For tissue heating many thermal agents are on hand. Superficial and deep heating agents are the two groups and they usually fall within one of these two. Paraffin wax, hot packs and a hot current are some of the superficial agents. Ultrasound, which is a deep heating agent, is used to raise the temperature of deeper tissues. Application of both superficial and deep heat to the body tissues shows many physiological changes. The degree of these changes depends on some factors: the amount of tissue shown to the heat; the rate of heat inside the tissue and the degree of the temperature rise. When the heat of the tissue temperature is raised between 40°C and 45 "C (104°F and 113°F), utmost therapeutic effect can be attained. The blood flow will rise to the heated area, when the tissues reach this temperature. Tissues when heated to temperatures over this level will have the potential to burn. Many therapeutic advantages are there when the tissue temperature is increased. Temperatures effect chemical reactions in the cells within the body. (Weinberger; Fadilah, Lev, 232)
An enhancement in the chemical reaction allows for a rise in oxygen uptake, as a result more nutrients will be available to help tissues cure more rapidly. Heating an area is linked to an improved blood flow to that area. Nutrients are carried and wastes are removed away from the area more efficiently, when there is an increased blood in the wounded area. Therapeutic heating has also shown to reduce pain and to help decrease muscle contraction. The physiological changes underlying these benefits include an increase of the level where pain is experienced, an alteration in the rate of signal conduction along a nerve and a fall in the rate of commencement of the muscle fibers. Temperature increase in amalgamation with elasticity will also help to change the length of connective tissue. If full range of motion movements is not made next to a wound, connective tissue structures will gradually condense. Adhesions may expand between the tissue layers and scar tissue may develop at the place of wound to further control mobility. Heat and stretch in amalgamation can result in reduced joint stiffness and improved tissue flexibility, thereby assist in easiness of movement and increase in range of motion. (Helfand; Bruno, 303)
The deep heat causes an increase in temperature from the exchange of energy into heat as it pierces the tissue of the body where the energy is applied. Ultrasound (high-frequency sound), electromagnetic radiation (microwaves) and high-frequency currents (short wave diathermy) are some of the energy sources. The temperature sharing in the tissue heated by any of these modalities is subjected to the type of relative heating, which is the amount of energy transformed to heat at any given position. The practitioner must select a heating modality that creates the highest temperature at the place of concern without exceeding the temperature acceptance at the affected site or in the tissues above or below that site. The properties of the tissue like the specific heat, thermal conductivity and the duration of time of the heat modality is applied depends on the increase in temperature. The spreading of both heat and temperature is connected with these modalities and are placed over on the physiological temperature distribution in the tissues before the diathermy treatment. Generally, the superficial temperature is considered minimum at the skin surface and more at the center. The physiological effects of temperature arise at the place of the treatment and in remote tissue. (Lehman; De Lateur, 562)
The reactions of cellular function by direct and reflex action are the local effects and are due to the high temperature. There is an enlarged blood flow linked with capillary dilatation and increased capillary permeability. There may be changes in the pain verge and the preliminary tissue...
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now