Technology and Global Ecosystem
An Analysis of the Implications of Technology and the Global Ecosystem
The 21st century promises to usher in innovations in technology that cannot yet be imagined, and the advancements to date have provided many in the world with unprecedented standards of living. Improved methods of transportation and communication, combined with more leisure time than ever in which to spend it has resulted in many people developing a keen appreciation for technology and what it promises for mankind; an unfortunate concomitant of these innovations in many parts of the world, though, has been an intensive assault on the globe's ecosystem in an effort to bring emerging nations into line with the productivity being experienced in the developed nations of the world. As a result, a debate over whether or not technology threatens the integrity of the global ecosystem has emerged in recent years, and pundits warn that global warming, acid rain, and the eventual exhaustion of the world's natural resources are just some of the unintended consequences of this imposition of manmade technology on earth's ecosystem. To determine the accuracy of these warnings, this paper provides an examination of the implications of technology and the global ecosystem, followed by a summary of the research in the conclusion.
Review and Discussion
Background and Overview. In her essay, "Gaia: Gender and Scientific Representations of the Earth," Marcia Bjornerud (1997) reports that, "Few ideas have provoked more rancorous debate within the modern scientific community than the Gaia hypothesis -- the proposal that the Earth can be viewed as a superorganism with the capacity to regulate its "body" chemistry and temperature" (89). Although the concept of the Earth as a living being is ancient, the formal scientific development of that concept first began in the 1960s when an atmospheric chemist, James Lovelock and a philosopher, Dian Hitchcock and a molecular biologist, Lynn Margulis, investigated the anomalous composition of Earth's atmosphere compared to those of neighboring Mars and Venus. According to these three investigators, the unique mixture of gases that surrounds the Earth and supports life on the planet is the very essence of "Life," which is created and maintained by the global biosphere for its own unfathomable reasons and uses. "The composition of the atmosphere, in turn, profoundly affects Earth's climate," Bjornerud says, "which has remained favorable for life for at least 3.5 billion years. In other words, life on Earth has not merely adapted to a hostile environment, it has continuously modified that environment" (90). The Gaia hypothesis in sum, then, is that organisms have acted collectively (if unknowingly) throughout the history of the world to make the environment more favorable for the global ecosystem as a whole (Bjornerud 90). Mankind's introduction of technological innovations into this carefully balanced and fine-tuned Gaiac system, though, have resulted in some predictable adverse outcomes, such as in the former Soviet Union where much of the country remains ravaged by the environmental impact of industries that have paid little attention to such controls in an effort to gain an edge on the West, to less predictable outcomes such as the growing hole in the ozone layer and acid rain.
Complicating matters for scientists and policymakers alike is the fact that the size of the ecological footprint is not static, but is rather dependent on money income, prevailing values, other socio-cultural factors and the state of technology (Wackernagel & Rees 1998:53). An approximate assessment of the four major human requirements for existence indicates that the current appropriation of natural resources and services has already exceeded the global ecosystem's long-term carrying capacity. According to Kennedy Graham's book, The Planetary Interest: A New Concept for the Global Age (1999), it may already be too late to reverse these processes:
Agriculture already occupies 4.8 billion hectares (3.3 billion hectares of pasture and 1.5 billion hectares of cropland). Sustainable production of current roundwood harvest, including firewood, would require a productive forest area of 1.7 billion hectares. To sequester the excess CO2 released by fossil fuel combustion, a further 3.1 billion hectares of carbon-sink land would need to be set aside. This totals 9.6 billion hectares, some 30% above what is available today, and 10% above all potential land. Thus there is evidence that humanity's ecological footprint already exceeds global carrying capacity. The 'global footprint' has been estimated today at 2.8 hectares per capita -- one third above the average earthshare of 2.1 hectares. That is to say, the draw-down on the planet's natural resources exceeds the sustainability level by one-third (emphasis added) (Kennedy 132).
The negative and positive impacts of technology on the global ecosystem are discussed further below.
The program includes five components namely 'Family Support', 'Maternal Interview', 'Records review', 'case review' and 'Community action'. (FIMR, 2010) The FIMR Process FIMR Informed of Fetal/Infant Death Family Support Data Collection/Record Review Maternal Interview Records Review Case Review Community Action Improved Maternal & Infant Health (FIMR) Conclusion Fetal origins of health and disease has developed into a new medical frontier for researchers. The growing body of research evidence has affirmed positive associations between the gestational environment and the development of various
In suburban areas, on the other hand, the economic opportunities are diverse and the population is less dense. Here parents are motivated to educate their child and the child gets higher individual attention from the teachers than those in the urban areas where population density is very high (Broomhall and Johnson, 1994; and Hanson and Ginsburg, 1988). Since educational aspirations of parents, students and teachers differ by population density
Self-esteem and self-efficacy are issues that are of primary importance. These are affected by a number of environmental factors, including immediate family, but also the environment in which a person moves, as well as the wider social environment. Contextualism Contextualism was promoted in 1942 by S.C. Pepper, and was previously known as "pragmatism." This term was often used in the work of Charles S. Peirce, William James, Henri Bergson, John Dewey, and George
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now