This therefore renders the bifurcation point instability null and void for the cable strayed as well as suspension bridges (Ren,1999). Cheng, Jiang, Xiao and Xiang (2001) pointed out that in theory, the analysis of the aerostatic stability of such kinds of bridges should be regarded as a limit point instability challenge. In their paper, which is based on the limit point instability concept; Cheng, Jiang, Xiao and Xiang (2001) presented a nonlinear finite element method (NFEM) in order to evaluate in a more direct manner, the critical velocity of the wind for all cases of suspension bridges suffering from aerostatic instability. In these bridges, the three main components of the wind loads together with the geometric nonlinearity are taken into consideration. This required the employment of a specialized computer program called NASAB which had its basis on the nonlinear technique was tested for numerical examples. Jiang Yin suspension bridge's aerostatic stability was investigated via the NFEM. The outcome was found to give information on the critical wind velocity of the NFEM which was noted to be greater that the magnitude obtained via the linear technique. The cause of the difference was explained. In their study, they also explored certain other aerostatic stability parameters necessary for various bridges.
Mikkelsen & Jakobsen (2010) performed a flutter analysis on the Hardanger bridge. In their analysis, they investigated the aeroelastic stability of the bridge which is a suspension bridge having a main span of about 1310 meters and was being constructed in Norway. The wind and structure system was described via a state-space format in a multimodal flutter analysis format. The outcome of the multimodal flutter analysis on the basis of the ambient vibration data had earlier in been reported by Jakobsen and Hjorth-Hansen (2007). Their work on the otherhand had its basis on the motion-dependent loads that were obtained from the forced vibration wind-tunnel tests using a 3 DOF-section model. The resulting aeroelastic loads were then approximated using the rational function approach that is closely associated with the frequency independent system matrix. This eliminated the need for iterating the eigen-values.
Xin-jun (2005) on the other hand performed an advanced aerostatic analysis for suspension bridges that are lengthy. He employed an advanced method aerostatic analysis that relies on the consideration of the geometric nonlinearity, spatial non-uniformity of the wind speed as well as the nonlinear wind-structures. The example of suspension bridge that was considered for this work was Runyang Bridge that runs over the Yangtze River. The parameter that were investigated included the effects of the nonlinear interaction of wind, the spatial uniformity of the wind speed as well as the wind load of the cable on the overall behavior of the suspension bridge.
Quite a number of studies regarding nonlinear aerostatics stability analysis of suspension bridges have been conducted. For instance, Liu et al. (2004, p.56) conducted an analysis on aerostatic responses of the cable-stayed bridges that are having long life spans. He took into consideration the geometric parameter's uncertainties and again, he took into consideration the aerostatic coefficients of the major girder. On the other hand, nonlinear impacts because of the interactions from wind-structures and geometric nonlinearity were not taken into consideration since the cost of computation was so high because the technique needs a fresh round of the analysis of FE for every sampling check. Cheng et al., (2004, p.780) also carried out a stochastic study of aerostatic stability for suspension bridges through the use of MCM that had its basis on cycle solutions. This needs very minimal work of computation. On the contrary, the cycle solutions are majorly appropriate for the study of torsional divergence, and therefore it is hard to widen the technique to analyze other kinds of bridges.
Similarly, the aerostatic behaviors of suspension bridges having long-span was expansively studied by Boonyapinyo et al. (1994, p.500), Xiao and Cheng et al. (2002, p.45).
The aerodynamic stability and static stability of bridges that are cable-stayed have been researched by numerous authors. Aerostatic instability may be grouped into two kinds depending on static instability modes: lateral-torsional buckling and torsional divergence. The two aerostatic instability phenomena were studied by Boonyapinyo (1994, p.504).
Simiu and Scanlan (1978) developed a linear technique to critically analyze the long span bridge's torsional divergence. Similarly, Xiang et al. (1996, p.) wrote the method that was used by them. These two techniques had their basis on the suppositions of linear structural inflexibility matrix and also of linearized pitch...
The production of electricity from power plants relying on this varying resource changes considerably. On the other hand the electricity demand does not cope with such variations. (Komor, 2009) • Other forms of barriers: There are some other obstacles like allowing challenges of renewable power plants and technical hazards with regard to transmission connecting to the plant, higher proportion of capital to operating costs and policy instability. (Komor, 2009) The prime
Even with the fact that Ancient Greeks obviously had a limited understanding of winds, it is nonetheless intriguing to look at how they perceived conditions in which winds are more likely to occur. Wind speed is faster above the ground because it encounters less friction and winds move very fast when there is nothing to slow them down. This is why wind turbines are mounted on top of towers. Anemometers
This effect is particularly important for structures on the boundary of different topographical features, such as those in Chicago, which sits next to Lake Michigan and thus feels the brunt of wind sweeping in from across the surface of the water while at the same time feeling the effects of the polar jet stream, or Los Angeles, which is positioned between the ocean and a range of tall mountains
Wind Energy Advantages of Wind Energy The exploitation of nonrenewable energy sources by the global population, notably by modern technological societies, has contributed to hostile political, economical, and environmental climates. The most notable nonrenewable energy sources, fossil fuels, which includes the burning of coal, petroleum, and natural gas, has induced concern of global warming, soaring oil prices, national energy security, and is depriving the earth of natural resources (Conner 130). Knowing the
Figures 3 and 4. Vertical Axis and Home Wind Turbine Configurations. Sources: http://www.symscape.com/files/images/flowind_darrieus.img_assist_custom.jpg, and http://techlime.com/wp-content/uploads/2008/04/home-wind-turbines.jpg. Current and Future Trends in Wind Power Applications. While the foregoing wind power initiatives would indicate that wind farms are already contributing a large percentage of the nation's energy needs, the research shows that this is far from the case. In this regard, the current total respective renewable energy consumption rates based on source in the United States
Wind Power The greatest challenge of the 21st century is filling the gap between energy demand and supply with clean, reliable and green source of energy. Energy is very essential and it is in material form in everything that is around us. The opportunity cost of obtaining the energy that we require is the impact that is made on our environment. Some energy sources have greater impacts while others have relatively
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now