Scientists have been aware of the existence of these stem cells for many years but have only recently realized the potential medical applications of the cells. More than a decade ago, scientists discovered that if the normal connections between the early cellular progeny of the fertilized egg were disrupted, the cells would fall apart into a single cell progeny that could be maintained in a culture. These dissociated cells, otherwise known as embryonic stem cell lines, continue to divide in culture, producing large numbers of cells at a fast pace. However, these early embryonic cells would lose the coordinated activity.
Scientists quickly discovered that these cells retain the ability to generate a great number of mature cell types in culture if they are provided with appropriate molecular signals (Reaves, 2001). Scientists have made significant progress in discovering these signals and are still working on it. While it is a difficult task, scientists are pursuing it with great excitement because it is widely believed that cultured embryonic stem calls can be induced to generate all the mature cell types in the body. These cells could possibly be used to replace damaged or sick cells in patients with injuries or degenerative diseases.
In the most controversial method, scientists can take the stem cells from aborted fetuses, first asking for signed consent from a patient who had previously decided to terminate her pregnancy. This is the procedure most often highlighted by pro-life activists who oppose supporting stem cell research.
However, there are other less-controversial methods in which stem cells can be utilized, such as umbilical cord blood stem cell use. Umbilical cord blood stem cells are the youngest safely available stem cells and are the product of live birth. Freezing these cells basically stops the clock and prevents aging and damage that may occur to the cells later in life. Another category of stem cells is adult stem cells, such as those found in bone marrow. Adult stem cells serve very specialized roles in children and adults and are not as proliferative as those found in cord blood. These types of stem cells are far less controversial than embryonic stem cells, and will be the focus of this paper.
Umbilical cord blood, in particular, offers great hope for the future of stem cell research and use. It has been approved for use by the FDA and other authorities since the late 1980's. The first umbilical cord blood transfusion cured a blood cancer in 1988. Over 1,000 cord blood transfusions, frequently used for children with leukemia, have been successfully performed in the United States with little side effects. Recent research has shown that umbilical cord blood stem cells have similar powers and health promoting benefits as do embryonic stem cells.
Advances are being made each day in providing greater safety to the patient. New methods of separating the stem cells from all other blood components have resulted in a product that consists of only stem cells. Since these umbilical cord stem cells have not developed ABO and HLA antigens on their surfaces, they do not induce graft vs. host reactions nor other problems that may occur with embryonic and adult bone marrow stem cells. Since the umbilical cord stem cells do not contain mature blood or tissue cells, foreign protein reactions are minimized. This paper will examine the potential of these types of stem cells, in an effort to demonstrate how stem cells from umbilical cord blood may help scientists solve the ethical debate and enhance humanity.
Background on Stem Cells
Stem cells are cells in the body that have the unique ability to regenerate and change shape (How Stuff Works, 2003). Unlike other types of cells, stem cells can change into other types of cells. Stem cells are at the center of an innovative field of science known as regenerative medicine. Because stem cells can become bone, muscle, cartilage and other specialized types of cells, scientists believe that they have the potential to treat a variety of diseases, including Parkinson's, Alzheimer's, diabetes and cancer. Eventually, stem cells may also be used to regenerate organs, eliminating the need for organ transplants and other surgeries.
Stem cells are like little kids who, when they grow up, can enter a variety of professions," says Dr. Marc Hedrick of the UCLA School of Medicine (How Studd Works, 2003). "A child might become a fireman, a doctor or a plumber, depending on the influences in their life -- or...
More research has to be undertaken for increasing our understanding of the tissue growth factors, translation protocols and control parameters to harness the full potential that stem cells therapy has to offer. This, it is hoped, would be realized in the near future with the rapid strides in the biotech field. While embryonic stem cells, considered to be the potential panacea for many deadly diseases is steeped in ethical
Dimitrios Karussis and Ibrahim Kassis, in the article, "Use of Stem Cells for Treatment of Multiple Sclerosis," conclude, "In the current review, the various types of stem cells, which were mainly studied in animal models, will be reviewed as a potential therapeutic approach for MS. The main and common mechanisms of action of all stem cells include induction of neuroregeneration and remyelination through the activation of resident stem cells, or
In the words of Obama, "Today, with the executive order I am about to sign, we will bring the change that so many scientists and researchers, doctors and innovators, patients and loved ones have hoped for, and fought for, these past eight years: We will lift the ban on federal funding for promising embryonic stem cell research," President Obama further said. "We will vigorously support scientists who pursue this
The media might present an issue as fact without verifying its truth via the appropriate channels, while the public in turn is eager to accept as fact what is presented to them, as this is much more simple than researching the issues themselves, or even simply verifying the truth of a stated fact. Furthermore, the authors hold that simply educating the public regarding issues of scientific controversy is far
Stem Cell Ethics Debating the Ethics of Stem Cells The term 'stem cells' can mean different things to different people. For some, it conjures images of medical miracles providing solutions for heart disease, diabetes, and dementia. For others, it terrifies with a future filled with cloned humans. Still others cringe at the thought of mass producing cultured human embryos for the sole purpose of providing organs and tissues for a paying public.
Protecting the rights of the one and sacrificing the lives of many is a sensitive subject, especially when the sides cannot even agree upon whether or not the one should have rights or not. It would seem that the establishment of researching guidelines that prevents the harming of a subject, for research purposes, has set a precedent, and that this violates right to know laws, as there is no
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now