Spray-On Solar Power Cells
A solar cell, or photovoltaic cell, is a semiconductor device consisting of a large-area p-n junction diode, which, in the presence of sunlight is capable of generating usable electrical energy. This conversion is called the photovoltaic effect. The field of research related to solar cells is known as photovoltaics.
Solar cells have many applications. They are particularly well suited to, and historically used in situations where electrical power from the grid is unavailable, such as in remote area power systems, Earth orbiting satellites, handheld calculators, remote radiotelephones, water pumping applications, etc. Solar cells, in the form of modules or solar panels, are appearing on building roofs where they are connected through an inverter to the electricity grid in a net metering arrangement.
Various materials have been investigated for solar cells. There are two main criteria - efficiency and cost. Efficiency is a ratio of the electric power output to the light power input. Ideally, near the equator at noon on a clear day, the solar radiation is approximately 1000 W/m2. So a ten percent efficient module of one square meter can power a 100-watt light bulb. Costs and efficiencies of the materials vary greatly. By far the most common material for solar cells (and all other semiconductor devices) is crystalline silicon. Crystalline silicon solar cells come in three primary categories. Single crystal or monocrystalline wafers are made using the Czochralski process. Most commercial monocrystalline cells have efficiencies on the order of 14%. The SunPower cells have high efficiencies around 20%. Single crystal cells tend to be expensive, and because they are cut from cylindrical ingots, they cannot completely cover a module without a substantial waste of refined silicon.
Most monocrystalline panels have uncovered gaps at the corners of four cells. Poly or multi-crystalline made from cast ingots - large crucibles of molten silicon carefully cooled and solidified. These cells are cheaper than single crystal cells, but also somewhat less efficient, however, they can easily be formed into square shapes that cover a greater fraction of a panel than monocrystalline cells, and this compensates for their lower efficiencies. Ribbon silicon is formed by drawing flat thin films from molten silicon and has a multicrystalline structure. These cells are typically the least efficient, but there is a cost savings since there is very little silicon waste because this approach does not require sawing from ingots. These technologies are wafer-based manufacturing. In other words, in each of the above approaches, self-supporting wafers of ~300 micrometers thick are fabricated and then soldered together to form a module.
Thin film approaches are module based. The entire module substrate is coated with the desired layers and a laser scribe is then used to delineate individual cells. Two main thin film approaches are amorphous silicon films and general chalcogenide films of Cu (InxGa1-x)(SexS1-x) 2, or CIS. Amorphous silicon films are fabricated using chemical vapor deposition techniques, typically plasma enhanced (PE-CVD). These cells have low efficiencies of around eight percent. While the CIS films can achieve 11% efficiency, their costs are still too high. There are additional materials and approaches on the horizon, for example, Sanyo has pioneered the HIT cell. In this technology, amorphous silicon films are deposited onto crystalline silicon wafers.
"Nano" refers to one billionth of a meter: the size of a few atoms clustered together to form a molecule. Nanotechnology is potentially more revolutionary than just miniaturization. Atoms and molecules are dominated by different forces, and governed by different rules, when they interact on the scale of the nanometer. In living organisms, atoms and molecules organize themselves into proteins, tissues, and ultimately living, thinking, emoting beings.
Nanotechnology comprises technological developments on the nanometer scale, usually 0.1 to 100 nm. One nanometer equals one thousandth of a micrometer or one millionth of a millimeter. The term nanotechnology is often used interchangeably with molecular nanotechnology, also known as "MNT," a hypothetical, advanced form of nanotechnology believed to...
delineates a hypothetical disaster plan in response to a major earthquake and tsunami in New York City. The disaster plan includes pre-disaster / pre-event preparations, actions taken during the disaster, resources available during the disaster, and post-disaster / post-event strategies. The scope of the disaster plan includes establishment of a new residence and survival plan for disasters with long-term effects. Additionally, the disaster plan contains two separate components: One
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now