¶ … Software Testing
Class Identification
Date of Submittal
Current Trends in Software Testing
The continued growth of Cloud Computing, Software-as-a-Service (SaaS) and virtualization technologies in conjunction continual improvement in the automating of the Deming's Plan-Do-Check-Act (PDCA) processes are defining the future of software testing and quality assurance. The most rapidly evolving trends in software testing include the defining of PDCA-based automated testing networks and Testing-as-a-Service predicated Cloud Computing-based platforms (Nakagawa, Ferrari, Sasaki, Maldonado, 2011). The legacy of software testing and quality assurance defined by Six Sigma methodologies are being automated into Web Services-based and SaaS platforms for quicker deployment and greater accuracy of results (Jones, Parast, Adams, 2010). Software-as-a-Service (SaaS) shows potential to reduce software testing cycles and improve quality to a level not seen in previous testing and quality management approaches (Watson, DeYong, 2010). The intent of this analysis is to analyze the current trends in software testing and how they impact overall development of enterprise software.
Background
Relying only on manually-based processes of software testing that are heavily dependent use on a single quality assurance methodology are providing only limited results and breadth of validation (Mattiello-Francisco, Martins, Cavalli, Yano, 2012). One of these quality assurance methodologies, the Deming PDCA Model, continues to be used for streamlining quality testing for enterprise-wide, broadly distributed software applications (Jones, Parast, Adams, 2010). Manually-based methodologies however are proving only to be only partially able to scale to the emerging global application development needs of software companies and enterprise building their own software internally as well (Yang, Onita, Zhang, Dhaliwal, 2010). To overcome this limitation, many enterprises are working towards the development of SaaS-based testing and quality assurance platforms including the fine-tuning and quantification of testing and verification sequences (Yang, Onita, Zhang, Dhaliwal, 2010).
Of the several approaches of integrating software testing and quality assurance into development methodologies moves from the manual to the automated (Ivanovic, Majstorovic, 2006) (Yilmaz, Chatterjee, 1997) the context of a hosted testing service is showing the potential to increase the accuracy and productivity of application testing for globally-deployed Web applications (Yang, Onita, Zhang, Dhaliwal, 2010). The time and cost constraints on the development of Web-based, global applications is straining the existing manually-based approaches to software quality management, analysis and release criterion (Watson, DeYong, 2010). Time and cost constraints of manual approaches are also slowing down in their delivery cycles, in many instances leading to a reduction in enterprise revenue from not having software out of testing fast enough to meet market needs. To counter and overcome these limitations, software testing is now beginning to become more integrated to the PDCA framework for creating faster time-to-market (Nakagawa, Ferrari, Sasaki, Maldonado, 2011). What is fueling the development of automated software quality testing and the use of SaaS platform is the integration of PDCA models and frameworks across global platforms (Nakagawa, Ferrari, Sasaki, Maldonado, 2011). This is a very significant trend and it is analyzed in the next section as it sets the pace and direction of Testing-as-a-Service.
The Integration of PDCA Modeling As A Foundation of Testing-as-a-Service
The transition form manually-based testing and quality assurance methodologies to those that are automated continues to dominate the trends occurring in this area. Relying increasingly on Cloud-based and SaaS platforms is giving development teams increasingly greater flexibility in anticipating and responding to market and organizational changes over time (Watson, DeYong, 2010). The PDCA cycle that is automated as part of a software testing lifecycle approach has been able to align and create greater levels of collaboration as well across departments and divisions of companies. This is one of the more powerful catalysts driving the trend of SaaS-based software testing and quality assurance. The need for coordinating across a broad range of product and service divisions, continually strengthened by new insight and intelligence, is proving to be highly effective in driving up the quality level of software (Nakagawa, Ferrari, Sasaki, Maldonado, 2011). Collaboration across departments is critical during the planning phase of any software testing project to ensure that engineering, development, quality assurance, product management, planning and services are all kept informed as to the direction and progress of software quality management. Software testing becomes the fuel or catalyst that keeps a software project continually moving forward from development to launch and eventual use. Software testing and quality assurance in software development is not often seen as the unifying factor in ensuring cross-functional team performance however (Yang, Onita, Zhang, Dhaliwal, 2010). The continued development of software testing on the SaaS platform...
Making each segment of the PDCA cycle configurable as part of a Software Testing as a Service, virtual teams would also have much greater autonomy in meeting reporting requirements and individual programmers could set specific quality management goals for their code. The benchmarking aspects of the PDCA cycle applied to individual code segments, and measured using Six Sigma-based methodologies would reduce design and verification cycles by nearly half or
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now