(Wolverine Tube Heat Transfer Data Book, 2009)
Basic components of Shell and Tube Heat Exchangers include the following basic components although there is a plethora of existing specific features used in design of the Shell and Heat Tube Exchanger. The components specifically are:
(1) Tubes -- "...the basic component of the shell and tube exchanger, providing the heat transfer surface between one fluid flowing inside the tube and the other fluid flowing across the outside of the tubes. The tubes may be seamless or welded and most commonly made of copper or steel alloys. Other alloys of nickel, titanium, or aluminum may also be required for specific applications. The tubes may be either bare or with extended or enhanced surfaces on the outside." (Wolverine Tube Heat Transfer Data Book. 2009) Corrugated tubes have been more recently developed and is stated to have heat transfer enhancement both inside and out as well as "...a finned tube which has integral inside turbulators as well as extended outside surface, and tubing which has outside surfaces designed to promote nucleate boiling;
(2) Tube Sheets -- the tubes are inserted into holes in the tube sheet and are held in place through either expansion into grooves cut into the holes or welded to the tube sheet where the tube protrudes from the surface. The tube sheet is usually a single round plate of metal that has been suitably drilled and grooved to take the tubes (in the desired pattern), the gaskets, the spacer rods, and the bolt circle where it is fastened to the shell. The tube sheet, in addition to its mechanical requirements, must withstand corrosive attack by both fluids in the heat exchanger and must be electrochemically compatible with the tube and all tube-side material. Tube sheets are sometimes made from low carbon steel with a thin layer of corrosion-resisting alloy metallurgically bonded to one side;
(3) Shell and Shell-Side Nozzles. The shell is simply the container for the shell-side fluid, and the nozzles are the inlet and exit ports. The shell normally has a circular cross section and is commonly made by rolling a metal plate of the appropriate dimensions into a cylinder and welding the longitudinal joint ("rolled shells"). Small diameter shells (up to around 24 inches in diameter) can be made by cutting pipe of the desired diameter to the correct length ("pipe shells"). The roundness of the shell is important in fixing the maximum diameter of the baffles that can be inserted and therefore the effect of shell-to-baffle leakage. Pipe shells are more nearly round than rolled shells unless particular care is taken in rolling, In order to minimize out-of-roundness, small shells are occasionally expanded over a mandrel; in extreme cases, the shell is cast and then bored out on a boring mill. In large exchangers, the shell is made out of low carbon steel wherever possible for reasons of economy, though other alloys can be and are used when corrosion or high temperature strength demands must be met."
(4) Tube-Side Channels and Nozzles. Tube-side channels and nozzles simply control the flow of the tube-side fluid into and out of the tubes of the exchanger. Since the tube-side fluid is generally the more corrosive, these channels and nozzles will often be made out of alloy materials (compatible with the tubes and tube sheets, of course). They may be clad instead of solid alloy;
(5) Channel Covers. The channel covers are round plates that bolt to the channel flanges and can be removed for tube inspection without disturbing the tube-side piping. In smaller heat exchangers, bonnets with flanged nozzles or threaded connections for the tube-side piping are often used instead of channels and channel covers;
(6) Pass Divider. A pass divider is needed in one channel or bonnet for an exchanger having two tube-side passes, and they are needed in both channels or bonnets for an exchanger having more than two passes. If the channels or bonnets are cast, the dividers are integrally cast and then faced to give a smooth bearing surface on the gasket between the divider and the tube sheet. If the channels are rolled from plate or built up from pipe, the dividers are welded in place. The arrangement of the dividers in multiple-pass exchangers is somewhat arbitrary, the usual intent being to provide nearly the same number of tubes in each pass, to minimize the number of tubes lost from the tube count, to minimize the pressure difference across any one pass divider (to minimize leakage and therefore the violation of the MTD derivation), to provide adequate bearing surface...
Buckingham Palace -- Heating Engineering Structure Buckingham Palace - Heating Structure The average temperatures of the groundwater systems are primarily maintained at the recorded depths of 10-15m under the ground surface (this is estimated at the mean yearly air temperature for the specific region) with further depths increase based on the geothermal gradient of the region (this is estimated to be 2.6°C for every added 100m of depth). Consequently, there's a temperature
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now