Riparian Buffer Management
Current Knowledge and Standards
Most bodies of water, both running and standing, have a flood plain known as a riparian area. Whether the waterway is a large river or a small, intermittent creek, the water directly affects and is affected by this adjacent land. The riparian area serves as a transition between aquatic and land habitats. It is the link between land and water. When this area is planted in such a way to protect the waterway from negative impacts of the adjacent land use, it becomes a buffer, specifically, a riparian buffer. Recently, we have become aware of several important functions of the riparian areas. They are vital to the conservation of valuable farmlands and essential to the removal of harmful chemicals from our water supply.
Since the turn of the century, during the beginning of the industrial area, lands in the riparian area have been cleared for many reasons and put into other uses, such as pasture, row crops, and storm sewer lines. As our population grew, pressure for home sites has increased and now there are a number of housing developments built in low-lying, flood prone areas. As a result, stream channels have been artificially straightened and deepened to control storm water runoff. The resulting pollutants in runoff are flushed into nearby streams and rivers, by passing natural systems of cleaning. The waters are exposed to much more sunlight as a result of the removal of shade trees, which increases water temperatures, and reduces the number of aquatic organisms, including fish. (Tjaden, 1998). It is essential to maintain and preserve riparian buffer areas in a sustainable manner. This area has brought more attention recently, as a result of public awareness and research projects. New technologies and knowledge make proper riparian buffer management easier than ever before.
By incorporating vegetative riparian buffers along as much of the length of a watercourse as is possible, runoff is intercepted, slowed, and allowed to percolate into the ground, recharging our groundwater. Multiple benefits with minimal expense occur when we allow natural systems such as riparian buffers to function properly.
Different plant materials have different benefits in a riparian buffer area. The following table summarizes the various benefits of grasses, trees and shrubs.
Table 1.
Relative effectiveness of different vegetation types for specific benefits
PRIVATE Benefit
Vegetation Type
Grass
Shrub
Tree
Stabilize bank erosion
Low/Medium
Medium/High
Filter sediment
Low/Medium
Filter nutrients, pesticides, microbes: sediment bound
Low/Medium
Filter nutrients, pesticides, microbes: soluble
Aquatic habitat
Wildlife habitat: range/pasture
Wildlife habitat: forest wildlife
Economic products
Low/Medium
Visual diversity
Flood protection
Source: Adapted from Agroforestry Notes. AF Note-4, Jan 1997. U.S. Department of Agriculture Forest
Using vegetation to stabilize and control or minimize erosion problems near stream banks and their immediate slope area is less expensive than repairing erosion-caused damage. Techniques to stabilize stream banks work by either reducing the force of the flowing water, by increasing the resistance of the bank to erosion forces, or by a combination of the two (Tjaden, 1999).
There are several planting techniques to increase the resistance of the stream bank through binding the soil with root systems and growing a vegetative cover. These techniques are also known as soil bioengineering. They include live staking, conventional plantings, live fascines, branchpacking, brushlayering, and brushmattressing. Once established, this living material effectively controls water runoff and wind erosion, minimizes frost heaving effects by binding the soil with roots; filters soil from runoff; intercepts raindrops, reducing soil erosion; improves rainwater percolation into the ground; and moderates ground and water temperatures (Tjaden, 1999).
Several riparian buffer zone restoration programs have been funded by the USDA to convince farmers of the importance and need to protect and restore these areas. They following was found about these programs (USDA, 1992). The number of farmers participating in riparian buffer zone programs is increasing, the overall level of participation is low. Reasons cited for this low participation rate include, lack of direct marketing of the programs, concerns about ultimately losing control over part of the farm, and the management burden of maintaining riverside fencing (Maille, 2001).
Individualized support is necessary when changing farm management practices. In order to increase participation in this program is it suggested that program strategies that enhance the likelihood that a given farmer will be exposed to examples of buffer zones on farms, and shifting extension staff resources and staff training to increase and improve contacts between the staff and farmers (Maille,...
Water Quality and Lake Winnipeg Watershed Management Eutrophication is the process by which nutrients in natural waters increase, causing an overgrowth of algae. Lake Winnipeg is one lake that has been adversely affected by eutrophication. Using Lake Winnipeg as a case study, this text demonstrates the causes of eutrophication, the effects of the same on aquatic life, and ways of minimizing its overall effects. What are the key differences in the physical,
The Leblanc alkali production processes were especially pernicious, but they followed along the lines of previous industrial processes. In other words, the first British environmental legislation was a response not so much to a qualitative change in industrial processes and their environmental impact but more to a quantitative increase in sources of pollution that had up to that point been (if only barely) tolerable. Legislation Arising From Public Anger At the
Stream Degradation and King County' Salmon Population King County in Washington State is home to some of the most significant spawning beds in the nation for several major species of salmon, such as the endangered steelhead and Chinook (or King) species. As a result of Washington's urbanization over the preceding years and decades, the purity and integrity of King County's streams and rivers have been degraded and the waterways contaminated (Morley,
Stated examples include: "cessation of mining or farming or causes of erosion, restricting livestock from riparian areas, removing toxic materials from soil or sediments, and eradicating invasive exotic species; (4) restoration of processes/disturbance cycles and this involves restoration of important ecological processes including natural flooding or fire regimes so that natural integrity is restored; (5) rehabilitation of substrates which may be any type of activity focused on repairing soil
Phosphorus and Eutrophicaation of Aquatic Systems Phosphorus (P) is an essential element for all life forms. It is a mineral nutrient. Orthophosphate is the only form of P. that autotrophs are able to assimilate. Extracellular enzymes hydrolyze organic forms of P. To phosphate. Eutrophication is the overenrichment of receiving aquatic systems with mineral nutrients. The results are excessive production of autotrophs, especially algae and cyanobacteria. This high productivity leads to high
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now