2007, p. 115). Likewise, a study by Wyndhamm and Saljo found that young algebra learners were more successful in their problem-solving efforts when collaborating in a group environment. According to these researchers, "An experiment involving 14 small groups of Swedish students (usually 3 per group) aged 10, 11, and 12 years shows that these students acting in groups and creating shared contextualizations were able to solve mathematics word problems calling for real-world knowledge. Research has shown students acting alone to have difficulty with the same types of problems" (Wyndhamm & Saljo 1997, p. 361). Other teachers report that algebra story problems can help make learning more relevant to young people's lives. For instance, according to Homann and Lulay, "Algebra story problems are an important practical application of mathematics since real-world problems usually do not arise in terms of equations but as verbal or pictorial representations. The problems are solved by understanding, abstraction, and transformation of these representations into symbolic equational forms which can be solved by algebraic algorithms" (1996, p. 1). Likewise, Laughbaum makes the point that, "Our students see relationships in their lives, but do not know that the study of functions is the tool for analyzing and understanding them. What our students must be taught is to recognize and understand these mathematical relationships in the world they live in now, and will live in as adults" (2003, p. 64). Even here, though, there are some constraints to learning. For example, Dillon and Sternberg emphasize that, "Problem solving involves building a representation of the words of the problem and finding the solution of the problem using the rules of algebra. A major difficulty in students' performance on word problems seems to involve representation of the problem, i.e., moving from the words in the problem to a coherent mental representation of the problem. One major subcomponent in the representation process for word problems in the translation of each sentence" (1986, p. 145).
Critical Evaluation from Own Experience
The argument has been made that some subjects, such as Shakespeare, should not be taught until students reach college because they do not possess the requisite maturity, life experience and interest that are needed to pursue them. The same argument can be made for teaching algebra at the secondary level, of course, but these arguments are misguided and do young learners a disservice. According to Stacey and MacGregor, "Algebra is hard to teach and hard to learn. [However], with commitment it is possible to teach a large proportion of the school population" (1999, p. 58). Therefore, when teachers take the time to explain the fundamentals that are involved in representation in algebra, most students are able to overcome their initial fear of the unknown and make the mental leap that is needed to understand how linear equations operate. In this regard, Staszkow suggests that teachers should seek to eliminate the mystery involved and just explain to students that, "To understand what algebra is all about, you must realize that, in algebra, letters are used to stand for numbers. Just as you operated with numbers in arithmetic, in algebra you simply replace those numbers with letters and work with them" (1986, p. 327). These types of elementary explanations that introduce the fundamental representational concepts that are involved in algebra will likely go a long way in reducing the initial anxiety that can result from being introduced to algebraic concepts that may appear to be so much arcane and unattainable mumbo-jumbo to young learners (Russell & O'Dwyer 2009). As Stacey and MacGregor point out, "Outside the algebra sections of their textbooks, students rarely see algebraic letters used except in formulas or as labels indicating the quantity to be found in diagrams or formulas. Their exercises almost always have numerical (rather than algebraic) answers" (1999, p. 58).
Indeed, some students appear to mirror the adverse reaction to being presented with learning algebra as being a form of severe punishment in the same fashion that humorist Dave Barry did when Sputnik was launched by the Soviet Union in 1957 and his mathematics teacher told his class that, "We would have to learn a LOT more math, as if it was our fault" (1989, p. 139). By helping young learners understand that algebra is not in fact a type of "punishment" and that the rules involved in solving algebraic problems are readily accessible and understandable with some effort, the first step to achieving the mental leap needed to successfully recognize the representational elements involved in algebra will have...
Algebra Lesson Plans and Curriculum for the 7th Grade Classroom The National Council of Teachers of Mathematics (NCTM) provides a comprehensive set of principles and standards for developing curriculum for grades K. through 12th. Chapter two of their text Principles and Standards for School Mathematics specifies the six principles considered vital for the development of a coherent math plan. The principles are general enough to apply across a wide variety
By observing x on the graph, then we make the connection that the slope of x on the graph represents rate of change of the linear function. Once we have done this, it is then possible to move to the development of a quadratic equation and see what the impact of the increase (or perhaps decrease) means to the data. Have we proven that the rate of change is linear?
Differentiated Instruction StrategiesIntroductionIt is important to approach each student\\\'s needs accordingly. Differentiated Instruction is important to me because in my self-contained class I�ve been using different strategies quite often since it is what works for them. Special ed students need attentive teachers and I believe using differentiated instruction is a good indicator of that. The research I�ve chosen to conduct my class will focus on finding the answers to what
This engaged the whole class, regardless of their previous comfort level with mathematics. Graphing was also helpful for students to visualize what things really 'meant' in terms of the numbers they were studying. Communication Solving word problems as a class in a hands-on fashion forced all students to communicate with one another about mathematics. This increased student comfort levels and generated a collective interest in the mathematical solving process. Students were given
This has had the unintended consequence of increasing the dropout rate, as students who fail to perform and to be promoted leave the schools altogether. Many good, creative teachers also drop out, frustrated with the stringent controls placed upon their teaching style. ELL (English Language Learner) students are at a particular disadvantage for taking standardized tests, given the frequently arcane wording of the exams. The tests are often poorly written,
Albert Einstein, a famously mediocre student, once commented that "It is little short of a miracle that modern methods of instruction have not completely strangled the holy curiosity of inquiry." Many educational theorists and gifted teachers have taken this to heart, and endeavored to create learning environments that reflect innovations that are both intuitive and ingenious. Unfortunately, we often see these same innovations stifled at the High School level. Whereas
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now