Renewable Energy and Interdependencies: Six Council Properties
Approach and uncertainty: What is the general approach that you will take to reduce carbon emissions associated with the issue that you are looking at and what sources of uncertainty are likely to be important?
The six council properties being constructed by regeneration specialist St. Modwen are situated on a brownfield site that was a former oil refinery and production site used by British Petroleum and represent an ambitious project that is intended to create a sustainable community for about 10,000 residents that can serve as a model for like-minded communities around the world (Evans 2011). The site will ultimately include 4,000 homes, four schools, various businesses, office premises as well as a cricket pitch (Evans 2011). According to Evans, "The project will take 25 years, but should leave behind a fully-formed community where people can live, work, educate their children and relax" (2011, p. 8).
The general approach that will be used to reduce carbon emissions in the six council properties will be a three-fold approach that involves (a) designing more efficient building systems including the use of renewable energy and passive energy systems; (b) orienting all council property buildings to maximize the efficiency of passive energy systems; and, (c) using more efficient construction methods and earth-friendly and human-healthy construction materials (Hirokawa 2009; Pacione 2009).
The main source of uncertainty involved in these initiatives, though, is that there may be a tradeoff involved with some modern environmentally harmful building materials that can introduce toxic substances into buildings, making the need for identification and selection of human-healthy construction materials of paramount importance. Other potentially important sources of uncertainty will include determining which construction methods produce fewer carbon emissions and ensuring that building contractors subscribe to these methods because of inexperience, a lack of appropriate equipment or because these methods may be more expensive; identifying optimally efficient building systems will also likely be challenging because of the rapidity with which new systems are being developed and introduced.
2.
Specific actions and cost-benefit analysis: Identify specific actions that you could implement, and consider in simple terms their cost and effectiveness. Conduct a simple cost-benefit analysis of your carbon reduction actions.
Based on the three general approaches described above, the following cost-benefit analysis is provided:
Designing more efficient building systems including the use of renewable energy and passive energy systems.
This is perhaps the most valuable initiative in terms of carbon emission reductions, and it can provide cost savings and several other benefits as well. In this regard, Rudden (2010) advises that, "Green building energy savings result primarily from reduced energy purchases and secondarily from reduced peak energy demand. Investing in clean, renewable energy technology also hedges against uncertain energy supplies, rising utilities costs, and more stringent carbon emissions limits" (p. 6). Passive energy systems offer a number of other advantages as well. For example, Davey (1999) emphasizes that, "Buildings that rely on passive energy are more agreeable to be in than ones that use masses of plant. They are not prone to the sick building syndrome (nor to getting plagues in the cooling systems). They offer the opportunity for individuals to have much more control over their immediate environments: people can even open the windows" (p. 5).
At present, most passive energy systems are characterized by the three essential elements set forth in Table 1 below:
Table 1
Three Essential Elements of Passive Energy Systems
Element
Description
Superinsulation.
Although not strictly necessary, passive energy buildings usually have a boxy exterior shape that makes it easier to maintain a good thermal envelope.
Efficient heat recovery.
Passive energy alternatives user ventilation systems that draw a continuous supply of fresh air. Incoming air passes through heat exchangers that reclaim the energy in outgoing warm air. If necessary, incoming air can also be passed through underground ducts to pick up geothermal energy.
Passive solar heating
Southern-facing, unobstructed windows with triple low- emissivity glazing and superinsulated frames capture and retain more solar energy than they let out.
Source: Stein 2008
Although passive energy systems typically involve slightly higher initial construction costs (between 5% and 7%), the savings that are realized over the long-term make their integration into new building construction feasible as depicted in Figure 1 below.
Figure 1. Breakdown of operational costs: Current average vs. passive construction
Source: Stein 2008
Beyond the long-term cost savings that can be achieved using passive energy systems, there are some other desirable outcomes that can be realized as well, including the following:
A. Passive energy systems are more sustainable...
(Williams 2005) The foundation of the Middle East region, is as dependant upon the realization of a balanced energy system, as is the rest of the world, for the same and differing reasons. The opportunity for a smart start is ripe and with the rational guidance of the technology available, and its experts as well as their own desire to create independence in real and figurative ways will be realized
Wind Energy Advantages of Wind Energy The exploitation of nonrenewable energy sources by the global population, notably by modern technological societies, has contributed to hostile political, economical, and environmental climates. The most notable nonrenewable energy sources, fossil fuels, which includes the burning of coal, petroleum, and natural gas, has induced concern of global warming, soaring oil prices, national energy security, and is depriving the earth of natural resources (Conner 130). Knowing the
Coed Darcy The urban village is being constructed on brownfield land that was formerly being used by an oil refinery that was called the Llandarcy Oil Refinery that was owned by BP. This oil refinery was constructed between the years 1918 and 1922 and it has been labeled as the first crude oil refinery in the country. Since there were some economic changes, the site was closed in the year
In this regard, some exceptions have been given to the insurance companies while the other companies should follow these principles. In the year 2005, the commercial sector of the United Kingdom spent $16,500 million for fossil fuels of 350,000 GWh. On the other hand, researchers have reported that a decline of energy consumption has been observed in the tertiary sector of the United Kingdom (Probst & Roecker, 2011, pg 109-124). Hot
Cost and CO2 reduction analysis were performed using local data available from both commercial and professional bodies. A majority of current thermal rating programs require the equipment to be tested in accordance to a standard test under specified testing conditions. This approach provides reliable data because it is possible to replicate such tests within an accepted uncertainty band. There are, however, some rating programs which combine a standard test
Cape Wind Project proposed for Cape Cod, and the political, economic, and social impacts to Cape Cod and Nantucket. The Cape Wind Project is a proposed wind-turbine project off the shoreline of Cape Cod in Massachusetts. Supporters of the project believe it is the right clean-air, renewable energy project for the area, and it will negate the need for an old, outdated fossil fuel electrical generating plant. Opponents believe
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now