Verified Document

Radiology, Reducing Patient Exposure And Term Paper

Under conventional radiology, excessive exposure outputs a "black" film. In case of digital systems, good images are got from a large range of doses. With the help of digital fluoroscopy systems, it is extremely simple to get as well as delete images. There might be an inclination to get more images than what is required. In case of digital radiology, higher patient dosage implies improved image quality and therefore a propensity to apply higher patient doses than is actually needed. Different medical imaging works need different intensities of image quality and due to that doses that have no extra benefit for clinical purpose are avoided. The quality of image can be affected through lack of correct levels of data compression and also post processing techniques and all these new challenges must be part of the optimization process and covered in the clinical and technical protocols. Local diagnostic reference levels must be reassessed for digital imaging and patient dose constraints must be shown at the console of the operator. Frequent patient training must be done at the time when digital methodologies are launched. Rendering training in managing image quality and patient dose in case of digital radiology is essential. Digital radiology will entail new laws and present new challenges in case of practitioners. Since digital radiology images are simpler to get and to communicate the justification, standards must be strengthened. Installation of digital systems must entail clinical specialists, medical specialists as also radiographers to guarantee that imaging potential and radiation dose management are dovetailed.

The biggest single man-made source of X-ray happens to be medical diagnostic radiography. Latest estimates have stated that the X-ray examinations constitute the reason behind the maximum of the total effective-dose-per-capita irradiation. The diagnostic nuclear medicine procedures are responsible for more radiation. It is normally consented that medical X-ray exposure can be lowered considerably without lowering the quality of radiological images. Hence it is important that patients are not exposed to unnecessary radiological examinations, and are safeguarded from greater degree of exposures when the radiological methods are needed. A lot of major dose surveys have been undertaken particularly in the developed nations. In 1991-92, Harison et al. undertook a pilot study through the application of indirect methods to examine the capability for reducing the radiation dose to patients and to made recommendations on efficient procedures. Even though it is restricted to quality control activities like tube potential (kV), mAs, sensitometry, and image quality tests, the gravity of patient dose monitoring was also identified as a vital aspect of the entire program. In the initial survey, the entrance skin exposures -- ESEs of the average size patients for the routine radiographs in public hospitals were conducted.

In the study it was observed that very wide variations of the patient dose in the identical X-ray examination in the different hospitals. Some of the factors that were responsible to the observed radiation in the patient exposure can be ascribed to the application of lack of optimal imaging devices, substandard choice of technical factors and wrong film processing methodologies. Therefore it is suggested that a considerable reduction in the doses of radiations can be done without seriously impacting the quality of image. Use of fast film-screen combination was possibly one of the major factors in lowering the ESE by 30 to 40%. Nearly, the entire radiology centre taking part in the study was making use of the combination of fast film-screen and good quality development drugs. Therefore the patient dose spread was primarily because of the choice of exposure factors, focus film distance and output of the X-ray units.

Since the chest and skull mAs and kVp in the first study was respectively higher and lower compared to the NRPB calibrations, it has been suggested that they raised kVp and lower mAs. These alterations would raise the patient dose without significant impact on the quality of the image. It has also been calculated that raising the tub potential from a value of 600 to 90 kVp will outcome in an ESE savings of 60%. It was discovered by Matrin et al. that raising the tube potential by 8-13 kVp in the lumbar and thoracic spine tests resulted in dose reductions of 26-30%. In the experiments it was also observed that the lowering in mAs lowers the film optical density and patient dose by a factor of 10 to 50% without obviously lowering the quality images. It implies that the contrast or resolution of a white radiograph might be equal...

However, maintaining PACS and clinical workstations comes under the purview of the overall hospital information technology management program. Whereas this condition in the majority of the situation happens in the clinical areas outside of radiology in which several multi-use Personal Computers are also used as image display devices, this state of affairs is more and more usual in the radiology environment wherein PACS workstations are managed as high-end computers in place of medical display devices. A large number of differences in the data sets exist that are created by different image acquisition systems that should be given room in case the spread of digital imaging across specialties has to progress in the absence of spawning severe negative side effects. For instance two instances can be given in which such problems crop up. (i) an ER doctor using the display monitor of a laptop computer for diagnosing a possible pneumothorax and (ii) a pulmonologist using a standard 1.2 megapixel (MP) display monitor to view the chest images to find out the presence of lung modules. In case of the above examples, the risk remains that the two physicians will not be able to see fine image details which are present in the image data sets as the display device will not be capable of producing them in a humanly intelligible way.
The two important factors in a display device happen to be spatial resolution and contrast resolution. The spatial resolution is found out by how many pixels a display device has, whereas the contrast resolution is found out by the brightness range of the monitor along with the application of DICOM calibration. Users of display and managers of medical display technology must be acquainted with these concepts and make application of that knowledge to the correct procurement, installation, and servicing of medical displays. Different doctors apply different data types and thus need different display devices. Apart from that, some physicians provide diagnostic reports or make treatment decisions based on the data they observe and, thus must have their monitors optimized to that assignment while others make application of images and the reports together as data points in a differential diagnostic process and are not in need or highest quality of image display. It is also crucial to consider safety concerns related with all equipment, particularly instruments in operating rooms, treatment rooms, procedure rooms, trauma rooms as well as ICU patient rooms. One recent phenomenon has been teleradiology that allows doctors to review images from home during emergency situations which also requires correct displays. Installation of a high-end laptop computer with a DICOM-calibrated high-resolution display can also be used.

Display devices contribute significantly in a lot of areas of healthcare and the absence of knowledge regarding the differences in image quality of display devices are areas of concern for the medical profession. Display broadly falls into two broad categories viz 'diagnostic' and 'review' which might also be referred to by the alternative names such as 'primary' and 'secondary'. Diagnostic displays are used for making a primary diagnosis and also for the purposes of displaying an image on which a report will be based. Review displays are used for display images for purposes apart from making a primary diagnosis and therefore the needs of these displays are less severe compared to those for primary displays. As regards maintaining display quality, it needs to remain at the specified settings and must not degrade in the course of time. The factors are focus, luminance, and contrast and color rendition. It is important to note that display devices must have limited user access to controls in order to check brightness and contrast being adjusted by the wrong personnel. Displays regardless of monochrome or color, might require color matching when used in groups. Review quality display devices do not require the identical level of image quality assurance as diagnostic displays. Nevertheless, they require cleaning and the image quality checked that could be attained with in-house trained staff. Care must also be given to display monitors used for instance at the homes of clinicians for remote reporting or review.

Latest developments in image enhancement:

lot of institutions have replaced traditional Cine Angiography -- CCA which makes use…

Sources used in this document:
References

Bouzarjomehri, F. (2003, Dec) "Reduction of unwarranted Patient Exposure in X-ray examinations" Iran Journal of Radiology, pp: 121-124. Retrieved 8 July, 2007 at http://diglib.tums.ac.ir/pub/magmng/pdf/253.pdf

Fortunati, Leopoldina; Katz, James. E. (2003) "Mediating the Human Body: Technology,

Communication, and Fashion" Lawrence Erlbaum Associates.

Funama, Yoshinori; Awai, Kazuo; Umezu, Yoshiyuki, et. al. (2005, Mar) "Digital Cine
International Commission on Radiological Protection. (1993) "Managing Patient Dose in Digital Radiology" ICRP Publication. Retrieved 8 July, 2007 at http://129.35.76.177/wps/find/bookdescription.cws_home/704214/description?navopenmenu=4
MHRA. (2005, Oct) "Display Device Image Quality" Retrieved 8 July, 2007 at http://www.mhra.gov.uk/home/idcplg?IdcService=SS_GET_PAGE&nodeId=852
N.A. (2004, Mar 19) "What is Radiology" University of California, San Francisco. Retrieved July, 2007 at http://www.radiology.ucsf.edu/patients/
N.A. (n. d.) "Angiography" Retrieved 7 July, 2007 from http://rad.usuhs.mil/rad/home/angio.html
N.A. (n. d.) "Computed Tomography" Retrieved 7 July, 2007 from http://rad.usuhs.mil/rad/home/comptom.html. Accessed on 7.9.07
N.A. (n. d.) "Magnetic Resonance Imaging" Retrieved 8 July, 2007 from http://rad.usuhs.mil/rad/home/mri.html. Accessed on 7.9.07
N.A. (n. d.) "Plain Radiographs" Retrieved 7 July, 2007 from http://rad.usuhs.mil/rad/home/plainrad.html. Accessed on 6.9.07
N.A. (n. d.) "Ultrasound." Retrieved 8 July, 2007 from http://rad.usuhs.mil/rad/home/ultsoun.html. Accessed on 7.9.07
N.A. (n. d.) "What is Fluoroscopy" Retrieved 7 July, 2007 from http://rad.usuhs.mil/rad/home/flouro.html. Accessed on 6.9.07
N.A. (n. d.) "What is Radiology: A simple guide" Department of Radiology of the School of Medicine of the Uniformed Services University of the Health Sciences. Retrieved 7 July, 2007 at http://rad.usuhs.mil/rad/home/whatis.html
Romlein, John. (2007, Jul) "Are you seeing the whole picture" Imaging Economics, Retrieved 8 July, 2007 at http://www.imagingeconomics.com/issues/articles/2007-07_02.asp
N.A. (2004, Mar 19) "What is Radiology" University of California, San Francisco. Retrieved 7 July, 2007 at http://www.radiology.ucsf.edu/patients/
N.A. (n. d.) "What is Radiology: A simple guide" Department of Radiology of the School of Medicine of the Uniformed Services University of the Health Sciences. Retrieved 7 July, 2007 at http://rad.usuhs.mil/rad/home/whatis.html
N.A. (n. d.) "Plain Radiographs" Retrieved 7 July, 2007 at http://rad.usuhs.mil/rad/home/plainrad.html
N.A. (n. d.) "What is Fluoroscopy" Retrieved 7 July, 2007 at http://rad.usuhs.mil/rad/home/flouro.html
N.A. (n. d.) "Angiography" Retrieved 7 July, 2007 at http://rad.usuhs.mil/rad/home/angio.html
N.A. (n. d.) "Computed Tomography" Retrieved 7 July, 2007 at http://rad.usuhs.mil/rad/home/comptom.html
N.A. (n. d.) "Ultrasound." Retrieved 8 July, 2007 at http://rad.usuhs.mil/rad/home/ultsoun.html
N.A. (n. d.) "Magnetic Resonance Imaging" Retrieved 8 July, 2007 at http://rad.usuhs.mil/rad/home/mri.html
International Commission on Radiological Protection. (1993) "Managing Patient Dose in Digital Radiology" ICRP Publication. Retrieved 8 July, 2007 at http://129.35.76.177/wps/find/bookdescription.cws_home/704214/description?navopenmenu=4
Bouzarjomehri, F. (2003, Dec) "Reduction of unwarranted Patient Exposure in X-ray examinations" Iran Journal of Radiology, pp: 121-124. Retrieved 8 July, 2007 at http://diglib.tums.ac.ir/pub/magmng/pdf/253.pdf
Romlein, John. (2007, Jul) "Are you seeing the whole picture" Imaging Economics, Retrieved 8 July, 2007 at http://www.imagingeconomics.com/issues/articles/2007-07_02.asp
MHRA. (2005, Oct) "Display Device Image Quality" Retrieved 8 July, 2007 at http://www.mhra.gov.uk/home/idcplg?IdcService=SS_GET_PAGE&nodeId=852
Cite this Document:
Copy Bibliography Citation

Related Documents

Radiation Safety in Radiology
Words: 951 Length: 3 Document Type: Term Paper

radiation safety in radiology, particularly for health care workers whose radiation exposure results from the risks of their occupation. This essay argues for improved understanding of occupational health risks and proposes that workplace hazards need to be better acknowledged and reduced as much as possible. Ionizing radiation is used to obtain highly detailed images of the body. Modern imaging techniques contribute to earlier and more accurate diagnoses, which promote better

CT Computed Tomography and Radiation
Words: 1595 Length: 5 Document Type: Research Paper

However, the increased use of CT scans in more of less careless and ill-advised practices will raise the concern of the effects it has on the health of the general public. It is therefore critical that the public is made aware of the associated risks and necessary education is conducted. The voice of all radiologists, clinicians, and technicians should advocate for the safe use of CT scans for both

Occupational Health and Safety There
Words: 4258 Length: 14 Document Type: Term Paper

Combined with the human development index these studies showed that using parameters that affect the standards like education, longevity, and standard of living it is possible to predict the environmental health factors, and find the actual health indicators. (Corvalan; Briggs; Zielhuis, 2000, p. 159) The first problem is the distinguishing between health promotion and health education. Work place health actions tend to be concerned about disease prevention. So far it

Living With Environmental Risks from Nature Healthcare
Words: 1405 Length: 5 Document Type: Essay

HEALTHCARE Healthcare: Living With Environmental Risks from NatureRadiation is a type of energy that moves with waves or particles, the most common type is ionizing radiation, which is extremely harmful (Funk et al., 2016). Radiation exposure has definite insinuations that will be discussed in this paper with mitigation strategies. Moreover, scientific, technology and societal issues are also elucidated for a thorough understanding.Scientific Issues Regarding Radiation Environmental RiskConstant scientific research investigates

Radiation Protection Radiation Safety Manual
Words: 2384 Length: 9 Document Type: Term Paper

It is carried out under the auspices of the Ministry of Health, acting through the Russian Federation Department of Sanitary and Epidemiological Surveillance (DSES). DSES is responsible for a wide range of areas of public health, including radiation protection." (Vincent, 1998) Quality Assurance Quality Assurance is statistically determined and tracked within each department when a radiation emitting device is in use. The Performance Improvement Team has overriding authority in this area

Computerized Hospital Management Systems the Paper Is
Words: 2566 Length: 6 Document Type: Essay

Computerized Hospital Management Systems The paper is about the benefits and costs of a computerized hospital management system from a nurse's perspective. The author is placed in the position of a nurse of a small 100 bed-community hospital who is the only nurse in a team of doctors to participate in the hospital management's decision on whether to buy such management system. In answering six specific questions related to the benefits

Sign Up for Unlimited Study Help

Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.

Get Started Now