Quantum mechanics is a theory that has emerged in the study of both chemistry and physics and has been received with a lot of enthusiasm. Nobel laureate physicist Philip Anderson goes as far as naming quantum mechanics the greatest invention of the last 2000 years, describing its impact saying,
The quantum theory forces a revision of our mode of thinking, which is far more profound than Newtonian mechanics or the Copernican revolution or relativity... It tells us that we really completely know the rules of the game which all these particles and quanta are playing, so that if we are clever enough we can understand everything about ourselves and our world. In other words, there is no "why" question about our everyday world that the quantum theory can't answer for is - Why is the sky blue? Why is glass transparent? What holds DNA together? Why does the sun shine? - and so on."
This expresses the potential of quantum mechanics to tie together various fields of study. Since quantum mechanics is about atoms and atoms are the basis of all matter, quantum mechanics has the potential to explain everything. This explains the interest shown in the area of quantum mechanics and the enthusiasm scientists have for studying the field.
It is also important to note that while quantum mechanics is a relatively new area of study, it has its basis in previous areas of study. Quantum mechanics can be seen as the latest addition to a century of scientific study attempting to determine the basis of matter. This begins with the classical theory of the atom, continues to Bohr's simple atomic theory, and develops further with de Broglie's wave theory, Heisenberg's uncertainty principle and Schrdinger's equation. The final result is quantum mechanics as it is known today.
To further investigate the development of quantum mechanics, each of these stages will be looked at in more detail, showing the main ideas that each stage added to the understanding of the atom. This will show that quantum mechanics is based on the combination of the ideas of many scientists, with the final acceptance of quantum theory occurring when Schrodinger's equation tied together previous theories and allowed them to be applied to subatomic particles.
Classical Theory of the Atom
The classical theory of the atom is based on the model of an atom being made up of a positive nucleus containing protons and neutrons with negatively charged electrons orbiting around this nucleus. This model was first proposed by Rutherford in 1911 who described the atom saying, "Most of the volume of the atom is empty space in which electrons move around the nucleus."
This basic model of the atom has been expanded on and used to determine how chemicals react with each other, the charges of chemicals and the physical properties of chemicals. While this has involved expanding the theory, the basic understanding of the structure remains the same.
While many theories look at atoms in much more complex ways, the important characteristics that remain is that electrons orbit the nucleus and that electrons determine the properties of the atom.
Simple Bohr Atomic Theory
Bohr's atomic theory expanded on the work of Rutherford with Bohr focusing on explaining the hydrogen atom, the simplest atom. Bohr accepted the idea that electrons orbit the nucleus of the atom. Applying classical physics to this situation, this would mean the electron would move in a circular path of differing energy, decreasing in energy until the electron crashed into the nucleus. This was a major flaw in Rutherford's theory, as one book explains,
According to classical electromagnetic theory, the atom model of Rutherford would be unstable. The electrons revolving about the nucleus are accelerated charged particles; therefore, they should continuously emit radiation, lose energy, and execute descending spirals until they fall into the positive center."
Bohr's theory did not reject the ideas of classical physics but did assume that the laws of physics did not apply to atoms. To explain how electrons could remain in orbit without crashing into the nucleus Bohr proposed that electrons are quantized. This involved proposing that electrons were only able to exist in orbits of certain radii and certain energy he called allowed energy states. In these allowed energy states, the electrons do not emit energy and so will not lose energy and crash into the nucleus but will remain in this orbit indefinitely.
Bohr's theory also included the idea that electrons were able to move between certain allowed energy states, absorbing or emitting radiation to achieve this move between energy states. Bohr used this theory to explain the spectrum of hydrogen. As one author explains, based on Bohr's theory,
The regularities...
So increased voltage results in a drop in current. As the voltage continues to increase the junction begins to function as a normal diode as electrons travel by conduction through the p-n junction and no longer tunnel through it. Therefore the most important region for operation in a tunnel diode is the negative resistance area. Used in reverse direction Esaki diodes are called back diodes and act as very fast
Essay Topic Examples 1. The Fundamentals of Quantum Computing: From Qubits to Quantum Gates: This essay would explore the basic principles that underpin quantum computing, including the concept of qubits, superposition, entanglement, and the quantum gates that manipulate qubits to perform computations. Additionally, the essay could compare classical bits to qubits to illustrate the potential of quantum computing. 2. Quantum Computing and Cryptography: The Future of Secure Communication:
Mechanics and Dynamics Life without motion is better explained as death. A living being is said to be having life only when the walls of the heart engage in pumping the blood, when the blood circulates through the entire body, when nerves impulse electrically from brain to toe, lungs move to bring oxygen, food transports through the stomach and intestines, when the iris expands and contract, when the eyeball rotates, etc.
This implies we live in a universe "in which six of the space dimensions have been collapsed or curled up in themselves." (Tipler 650). Since all of these dimensions are believed to be of the order of the Planck length they cannot be seen by any common experimental procedures currently in practice today. Despite the attractiveness of string theory its utilization of large numbers of space dimensions raises many important
Sociological Theory Sociology There were several theories that I found interesting as a part of the course, yet the theory that I connected with most personally was Symbolic Interaction. This theory was established first by George Herbert Mead, who coined the phrase "symbolic interactionism" first. The theory has been present in the field of sociology for several decades, and after the death of Mead, other sociologists took on the theory in
Once again, time is an indicator. When a significant amount of evidence for a theory is readily available, the theory tends to be older and concomitantly more accepted by the scientific community. If there are significant gaps in the evidence, the theory can benefit from further investigation. The same is true of the complexity level of the theory is not very high. More components can then be added by further
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now