¶ … speech: Robotics in medicine
In the 1950s, robots were envisioned as large, hulking devices with relatively limited capabilities. But "robot, taken from the Czech robota, meaning forced labor, has evolved in meaning from dumb machines that perform menial, repetitive tasks to the highly intelligent anthropomorphic robots of popular culture" (Lanfranco, "Robotics"). Similarly, in the 1980s, video games were primitive and allowed users to manipulate images on a screen with halting, sticky joysticks. Today, it is common to play relatively sophisticated video games via the Internet from around the world. Fusing the modern capabilities of robots and computers has yielded one of the most important developments in modern medicine in recent years: robotic surgery. Robotics can offer people potentially life-saving, less invasive surgery. One day, having surgery performed on you by a doctor in another country may become commonplace. The use of robotic surgery is likely to increase in the future of medicine. This speech will detail the history of robotic surgery; some common procedures and surgical systems; a cost-benefit analysis of the benefits of robotics and the future outlook of robotics.
History of robotics in medicine
According to Brown University's School of Medicine, the origins of modern robotic surgeries can be traced back to 1987 in the form of the first laparoscopic surgeries. This was deemed a breakthrough because laparoscopic surgery allowed for less invasive procedures and shorter hospital stays. There was also a marked reduction in the risk of infection. However, there were also some drawbacks. "The equipment requires a surgeon to move the instruments while watching a video monitor. The surgeon must move in the opposite direction from the target on the monitor to interact with the correct area on the patient so hand-eye coordination, tactile and force feedback, and dexterity aren't compromised" ("History of robotic surgery," Brown School of Medicine). The surgeon, unfortunately, lacks the 'feel' and tactile feedback given by conventional surgery. "Moving the laparoscopic instruments while watching a 2-dimensional video monitor is somewhat counterintuitive. One must move the instrument in the opposite direction from the desired target on the monitor to interact with the site of interest. Hand-eye coordination is therefore compromised" (Lanfranco, "Robotics").
But research on how to improve robotic surgery continued. "Teleprescence surgery…combined virtual reality, robots, and medicine. In the early 1990's, the scientists from the NASA-Ames team joined the Stanford Research Institute (SRA) to develop a telemanipulator for hand surgery" ("History of robotic surgery," Brown School of Medicine). The U.S. Army became especially interested in robotic surgery, since there was a hope that it could bring expert assistance to wounded soldiers in the field of battle. This resulted in the development of the "first non-laparoscopic robot" named the Puma 560 which was used to perform neurosurgical biopsies ("History of robotic surgery," Brown School of Medicine).
These efforts to improve surgery for the Army began to translate into commercial uses, beginning with Computer Motion, Inc. which developed the Automated Endoscopic System for Optimal Positioning (AESOP) "a robotic arm controlled by the surgeon voice commands to manipulate an endoscopic camera" (Lanfranco, "Robotics"). This was followed by other popular forms of robotic surgery, including the Da Vinci and Zeus robotic systems used today (Lanfranco, "Robotics"). The use of robotic surgery in different types of procedures began to expand and today robotics is used for surgeries as diverse as coronary artery bypasses; gall bladder removal, hysterectomies and tubal ligation; kidney removals and transplants; some forms of heart surgery; radical prostatectomy; and hip replacements amongst others (Liou, "Robotic surgery"). "The number and types of surgeries being performed with robots is increasing rapidly as more institutions acquire these systems. Perhaps the most notable use of these systems, however, is in totally endoscopic coronary artery grafting, a procedure formerly outside the limitations of laparoscopic technology" systems (Lanfranco, "Robotics").
How robotic surgery is performed today
According to the...
Sociological Aspects of GPS Tracking in Children The use of GPS tracking devices for children would have an overall negative sociological impact in American society in the 21st century. Justification: Human microchip implants are identifying circuits or chips that may have two functions: identification and tracking. Both aspects have been available for some time in pets, but there are a number of cultural, legal, and sociological aspects to the process of using
All these charters that have clearly defined the boundaries of what both the positive i.e. natural rights and negative i.e. The unjust exploitative rights of the people are and how no institution or research domains have the right or power to violate them (Dierkes, Hoffmann and Marz, 1996). Based on the above fact, we have to consider all the concerns related towards security of an individual as well as his
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now