¶ … prokaryotes consist of millions of genetically distinct unicellular organisms. A procaryotic cell has five essential structural components: a genome (DNA), ribosomes, cell membrane, cell wall, and some sort of surface layer which may or may not be an inherent part of the wall (1). Functional aspects of procaryotic cells are related directly to the structure and organization of the macromolecules in their cell make-up, i.e., DNA, RNA, phospholipids, proteins and polysaccharides. Diversity within the primary structure of these molecules accounts for the diversity that exists among procaryotes (1). Identifiable groups of prokaryotes are assembled based on easily observed phenotypic characteristics such as Gram stain, morphology (rods, cocci, etc.), motility, structural features (e.g. spores, filaments, sheaths, appendages, etc.), and on distinguishing physiological features (e.g. anoxygenic photosynthesis, anaerobiasis, methanogenesis, lithotrophy, etc.). Prokaryotes are commonly known as bacteria, and it is estimated that bacteria have been around for at least 3.5 billion years
Different families of bacteria have different shapes. Typical cell shapes are straight rods (bacilli), spheres (cocci), bent or curved rods (vibrios), spirals (spirochetes), or thin filaments. Some bacteria exist as single cells, while others form clusters of various shape and complexity. Many groups of bacteria have a cell wall, which is mostly comprised of peptidoglycan (a chemical composed of carbohydrates and proteins). Gram-positive organisms have a relatively thick layer of peptidoglycan and stain violet when applied with certain dyes; gram-negative organisms have a thin layer of peptidoglycan covered by an outer membrane and stain red under the same application of dyes. Thus, Gram staining is an important method for identifying bacteria (5). However, the most precise method of classification is genetic analysis (5). Each species of bacteria has a unique genetic makeup, and a unique sequence of deoxyribonucleic acid (DNA) bases.
Many bacteria have structures and processes that allow them to adapt to hostile environments, and they can exist under a range of conditions. Those that require oxygen for growth are called obligate aerobes. In contrast, obligate anaerobes will not grow in the presence of oxygen. Acidophiles are bacteria that grow optimally under acidic conditions (pH of less than 7.0), while alkaphiles prefer alkaline or basic conditions (pH of greater than 7.0). Organisms that require a temperature near 99°F (37°C) (the body temperature of warm-blooded animals) for growth are called mesophiles; those that grow at temperatures above 113°F (45°C) are called thermophiles; and psychrophiles are able to grow at temperatures near 32°F (0°C). Halophiles require sodium chloride (salt) for growth; osmophiles are able to grow in environments high in sugar; and xerophiles grow under dry conditions (1).
Bacteria grow and replicate in a process known as binary fission. In this process, a parent cell divides to produce two daughter cells. The process begins with the growth of the parent cell; the chromosome unwinds and replicates, each copy moving to opposite ends of the cell. The cell is then partitioned in half by the production of a dividing wall (called the septum). The cell is cleaved at the septum, and two daughter cells are produced. If necessary nutrients and energy sources are present, the daughter cells then go on to reproduce as parent cells. The dynamics of a population of bacteria change during binary fission. The doubling time, or time required for one parent cell to produce two daughter cells, varies by bacteria species and strain and also by the environmental conditions. All bacteria exhibit a characteristic pattern of growth when introduced to a new medium; this is known as the growth curve (1).
PATHOGENIC BACTERIA
Only a small percentage of the vast population of bacteria is pathogenic (disease-causing) to humans. Many species of bacteria colonize the human body and are called the normal flora. Organisms of the normal flora are normally found on surface tissues such as skin, mucous membranes, and the gastrointestinal system. It is when bacteria enter normally sterile areas of the body, such as the brain, blood, and muscle tissue that disease may result. Some organisms of the normal flora neither harm nor provide benefit to the human body; this relationship is called commensalism. Normal commensals are bacteria that can always be found on or in healthy individuals and rarely cause disease. Bacteria that occasionally colonize the human body without causing disease are called occasional commensals. Although a human fetus is sterile in utero, colonization with normal flora bacteria begins with birth when the baby comes into contact with the mother's vaginal bacteria, and continues with breast feeding and subsequent contact with the environment.
Many other types of bacteria interact with the human body in a relationship called mutualism, from which both organisms...
Desiccation Tolerance in Prokaryotes Prokaryotes or eukaryote is the organism that makes up the microbial world. Prokaryotes are deficient of internal unit membranes and are self-sufficient cells or organisms. The best-known prokaryotic organisms are the bacteria. The cell membrane in prokaryotes makes up the cell's primary osmotic barrier and consists of a phsopholipids unit membrane. The ribosome carries out translation and protein synthesis and is present in the cytoplasm. Normally, the
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now