¶ … continental drift to the present to explain the plate tectonics theory and how the Earth is forever shifting. Use some examples of past and present changes in the earth and the effect they caused. A newer theory in geological history, plate tectonics is used to explain many geological changes in the Earth, both past and present, and indicates how the Earth is forever adjusting and shifting, creating uplifts and cracks in the many plates that make up the Earth's interior surface. These plates are the cause of earthquakes, and so, they are ultimately the cause of some of the world's worst disasters.
Several theories of geologic process and scientific discovery helped lead to the discovery of plate tectonics in the 1920s, and the theory was generally accepted by the 1950s. The plate tectonic theory evolved from earlier theories, beginning with continental drift. The first time continental drift was mentioned was in 1908, by an American named Frank Bursey Taylor. However, the theory really did not gain acceptance until 1912 when German meteorologist and geophysicist Alfred Wegener detailed the theory and gave it more basis in fact. The continental drift theory believes that between 275 and 175 million years ago, all the continents were joined together in one land mass. Later, this massive continent broke apart into two gigantic landmasses in the north and south, those continents further divided about 100 million years ago into more currently recognizable shapes, and they began to drift apart during this time, too. Wegener used several examples from the current geological makeup of the continents to prove his theories, including the zigzag continental shelves of the Atlantic that would match up if mated, and features such as coal in the polar regions and glacial deposits in the temperate regions around the equator ("Continental Drift," 2000). Wegener also believed the oceans formed as a result of the continents shifting away from each other, and mountain ranges formed when the continents bumped into each other (Stallings, 1995, p. 114). However, Wegener's theories were not generally accepted at the time, and it took more study and theorizing for them to become openly accepted in most geologic and scientific circles ("Continental Drift," 2000). It seems by the 1970s, plate tectonics was widely accepted, and most all scientists and geologists believed it was the correct theory regarding continental shift and the resulting geological changes in the Earth.
Another important discovery that ultimately led scientists to believe the theory of plate tectonics was correct was the discovery of seafloor spreading. Until the development of new technologies in the 1950s, scientists really did not know much about the ocean floor and its makeup. Development of seismic technologies allowed scientists to plot the ocean floor, and Princeton geologist Harry Hess discovered the Mid-Atlantic Ridge in the 1960s. This Ridge basically split the Atlantic Ocean region in two, and then they discovered this ridge is just part of a vast system of undersea mountains that reaches around the globe. Some of the ridges are cut with rifts and jagged edges and offsets. The offsets are called "transform faults," and they are the origination point of most all shallow undersea earthquakes. The discovery of this central ridge led to the theory that the seafloor spreads from these central ridges, and is created by magma that rises through the ridges and spreads out to create new layers of the seafloor. The seafloor spreads out through magma release and far-field stresses and the mantel pushing upward against the spreading axis of the seafloor. These theories explain the deep oceanic trenches located near the continents, because this is where the oldest crust is reabsorbed into the mantle when earthquakes occur. In addition, the rock on the oceans' floors is much younger than rock on the continents and the sediment gets younger the closer it gets to the mid-ocean ridge.
What really helped fashion these two findings into the plate tectonics theory was the discovery that magnetic particles in many rock samples dated back to magnetic alignment of the Earth in previous time. Scientists do not know why, but the magnetic pole of the Earth flips back and forth between the South Pole and the North Pole. When scientists discovered bands of rock in the ocean floor that also pointed north, then alternately south, the plate tectonic theory took on additional meaning. One scientist writes, "What had happened was that hot lava, upon cooling to hard, basaltic rock, had frozen into it a permanent record of the...
Plate Tectonics Theory The story of Plate Tectonics is the story of continents drifting from place to place, breaking apart, colliding, and grinding against each other (Story pp). It is also the story of terrestrial mountain ranges rising up while being pushed together, of oceans opening and closing, of undersea mountain chains girdling the planet like seams on a baseball, and of violent earthquakes and fiery volcanoes (Story pp). Plate Tectonics
Plate Tectonics and Landform Processes The Aleutian Islands, Alaska The Aleutian Islands are located along the southwestern coast of Alaska, ad at the northern edge of the Pacific plate. This plate runs along the Pacific coast of North America, with its well-known faults -- the San Andreas and the Denali -- causing the strike-slip plate motion that is familiar to residents of the Pacific coastal areas. However, at the Aleutian Island location
Bibliography Kious and Tilling, 1996, This Dynamic Earth: The Story of Plate Tectonics: USGS Special Interest Publication in: Ring of Fire, Plate Tectonics, Sea-floor Spreading, Subduction Zones, Hot Spots (nd) USGS/Cascades Volcano Observatory, Vancouver, Washington. Online available at: http://vulcan.wr.usgs.gov/Glossary/PlateTectonics/description_plate_tectonics.html Mian, Z. (1993) Understanding Why the Earth is a Planet with Plate Tectonics. R.A.S. Quarterly Journal Vol.34 No.4 Dec 1993. Online available at Harvard at: http://articles.adsabs.harvard.edu//full/1993QJRAS..34..441M/0000443.000.html Ring of Fire, Plate Tectonics, Sea-floor Spreading, Subduction
plate tectonics is responsible for changing continental landmasses through geological occurrences. Thousands of years ago the earth's surface has been hypothesized as one big landmass. The Earth's surface has been constant motion. "Fragmented into giant sheets of solid rock that glide atop a layer of hotter, more pliable material, the globe's appearance is forever changing." [Cowen, 1999]. These plates are semi-rigid, floated on flow of mantle. The plates measured around
Continental Drift and Plate Tectonics Theories It is by now universally recognized that the continents and other land masses on the earth are constantly moving, albeit at a very slow rate and have been on the move for millions of years. The land masses have collided, broken apart and drifted across the planet while floating on the fiery mantle beneath the outer layer of its crust. The Continental Drift and
D.). A researcher may determine if a rock sample is sedimentary by examining whether it consists of grains. An igneous (from the Latin word for fire) rock, known as granite, consists of minerals like quartz, mica, and feldspar. "Igneous rocks come from melted rock material, or magma, that lies under Earth's surface" ("How can you tell," n.d.), forming when magma from inside the Earth travels toward the Earth's surface, or
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now