¶ … a&P Lab
Design Project -- A&P Lab
Ammonia (NH3) is produced by cells located throughout the body; most of the production occurring in the intestines, liver, and the kidney, where it is used to produce urea. Ammonia is particularly toxic to brain cells, and high levels of blood ammonia can also lead to organ failure. The imaginary organelle referred to as a hydrosome functions in a manner that decreases the blood ammonia levels in people, thereby circumventing the need for medications such as to treatment to prevent hepatic encephalopathy and conditions associated with a failing liver. The hydrosome functions similarly to a primary lysosome, also containing a highly acidic interior with lytic enzymes called hydrolases. However, the waste disposal that the hydrosome conducts serves to convert ammonia to a water-soluble waste that is then excreted by the kidneys.
About this Organelle
I came up with the idea for this organelle because many diseases and disorders appear to be associated with high blood ammonia levels, and because hyperammonemia is a life-threatening medical emergency. If the human body contained an organelle with the capacity and function to reduce high levels of ammonia in the blood, it would be a tremendous help to people who have damaged livers or have contracted a disease that results in symptomatic high blood ammonia (Prasad, et al., 2007). Several drugs are useful in the treatment of hyperammonemia, including benzoate and phenylacetate (Prasad, et al., 2007). Both of these medications work by converting ammonia into water-soluble forms that the kidneys eliminate effectively (Prasad, et al., 2007).
The imagined organelle is referred to a hydrosome, as it functions similarly to a lysosome, and also contains a highly acidic interior with lytic enzymes called hydrolases, just as the lysosome does ("Interactive Concepts"). However, the waste disposal that the hydrosome conducts serves to convert ammonia to a water-soluble waste ("Interactive Concepts"). The hydrosome specializes in the breakdown of protein, which in turn triggers conversion of the ammonia by product ("Interactive Concepts"). In other words, the hydrosome enables the body to utilize proteins by breaking them down through the action of a specialized enzyme complex, but the hydrosome completes the process by eliminating the ammonia byproduct ("Interactive Concepts"). Here, the benefit of a labeled eukaryotic cell is apparent, as the cell could not survive the action of destructive enzymes without their containment in the membrane-bound lysosome. ("Interactive Concepts").
The inspiration for this imaginary organelle is the laxative called Lactulose that has a secondary use for the treatment of hepatic encephalopathy (Sharma, et al., 2009). However, the realism of a lactulose treatment regimen is questionable as it induces unstable bowel functioning and creates substantive social and management difficulties for the patient (Sharma, et al., 2009). A more acceptable, less intrusive way to address high blood ammonia levels in individual experiencing cirrhosis of the liver is highly desirable (Sharma, et al., 2009). Suspending disbelief -- as one does when watching a fantastical movie -- imagine that the cells of the body hold the answer to addressing potential liver failure (Sharma, et al., 2009). In this scenario, the organelle known as hydrosome makes radical drug therapies unnecessary.
Lactulose works to reduce the bacterial production of ammonia in the intestines, and the draws ammonia from the blood to the colon, from which it is purged with waste (Sharma, et al., 2009). Hydrosome acts in a more direct manner, acting directly on the proteins and the waste product of the protein breakdown (Sharma, et al., 2009). The membrane-bound hydrosome organelles are co-located within eukaryotic cells with lysosomes, to which they are morphologically similar (Sharma, et al., 2009). In the same manner as lysosomes, hydrosomes use endocytosis to engulf and break down proteins ("Interactive Concepts").
The enzymes complex releases a compound functions chemically like sodium phenylacetate and sodium benzoate, and that serves as an alternative to urea for the excretion of nitrogen waste (Batshaw, et al., 2001; Haberle, et al., 2012). The released...
CELL & ITS COMPONENTS Biology Biologists, researchers, and professionals of many disciplines study the nature of the cell. The drive to understand the nature of the cell aligns with urges to understand the nature of the atom, the molecule, DNA and other entities of astronomically small size. In many instances, studying the extremely small provides profound insight and clarification on how bodies of much larger sizes including societies and galaxies work
Enzymes 1. How does temperature affect enzyme function? Every enzyme demonstrates maximum activity at a particular temperature known as its optimum temperature. Generally, all enzymes are inactivated at temperatures below 10°C and get denatured (lose its three-dimensional protein nature) above its optimum temperature (Seager & Slabaugh 2010). Experiments conclude that enzyme activity increases by almost ten percent coupled to each degree rise in temperature until it reaches its optimum state and declines beyond
Neuroscience and Human Development One of the most noticeable aspects of human beings involves the changes in shape, size, form, and function of the individual from a newly formed fetus to a fully grown adult. As the single most successful organism on Earth, human beings have developed, through millions of years of evolutionary adaptations, integrated yet malleable systems involving biological, physiological, emotional and intellectual components. This paper will review some of
Given a mosquito's vastly shorter life span, preventing the spread of the infection to more human hosts greatly reduces the number of viable parasites in existence (CDC 2009). 10) There are several reasons that viral infections are more difficult to treat and diagnose than bacterial infections. For one thing, viruses are not truly alive, and this makes it difficult to kill them. They are essentially packets of genetic information in tough
Nanomachines The Science of molecular size machines and its engineering designs and constructions until late 1980s were not considered practicable. Nanotechnology, according to the leading exponents of that time were neither feasible nor viable, due to the fact of total structural difference of the constituent of nano-molecular device i.e. Atoms from the mechanical objects of every day life. The essential components of engineering mechanics i.e. cogwheels, gears or motors could not
These proteins include homologous members of yeast. The presences of these proteins suggest that E. histolytica is skilled to perform homologous recombination, which is the same as in other organisms. DNA damage was evaluated by TUNEL assay. In yeast and in human cells, histone H2AX becomes rapidly phosphorylated when DSBs are introduced into chromatin (Lavi et al.). Studies show that histone as a protein plays a significant role in the
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now