Nanotechnology
All manufactured products are made from atoms, with the properties of these products based on how atoms are put together. By rearranging coal atoms, diamonds are formed. Similarly, by rearranging the atoms in sand and adding some trace elements, electronic chips are developed. In time, it will be possible to more readily connect the fundamental building blocks of nature. The word "nanotechnology" is used to describe when the characteristic dimensions of any technology that is less than about 1,000 nanometers. The future will bring the production of new manufacturing processes that will allow companies to inexpensively build systems and products that are molecular in both size and precision. Any businesses, old and new, that are interested in, considering and/or already applying this advanced and still relatively unknown technology will have to do extensive research on the benefits and disadvantages and then, if wanting to proceed, develop a complete and thorough strategy of implementation if they wish to have higher chances of future success.
NT uses either top-down processes (lithography) to cut out or add material to a surface, or bottom-up processes in which NT materials self-assemble to create larger structures. Merkle from Xerox Corporation explains that this is a similar process that is done continually by trees. "Trees grow by taking energy from sunlight and nutrients from the soil to build themselves ... They only use what they need, arranging the atoms in complex internal patterns." Further, "trees also self-replicate: They produce seeds that build other trees. Precisely because it's a miracle of biology, lumber costs only a few dollars per pound." In other words, once there is self-replication, a company has a means for a manufacturing process that is intrinsically low cost (In Fouke 47).
Living systems also use self-assembly, adds Merkle (In Fouke ibid), who calls this "selective stickiness." If two molecular parts have complementary shapes and charge patterns, they will have the tendency to stick together to form a larger part. This will help in building "nanotools," which will construct other things. Molecular-scale positional devices will hold molecules in precise position and one-ten-millionth-scale robotic arms sweeping back and forth over a surface will add and withdraw atoms to build structures. This is comparable to constructing a car. First, use nanotools to build an assembler, or a minute, computer-controlled robot that can be programmed to build nearly anything. Then program the assemblers to replicate. Finally, build the product.
The time for "selective stickiness" is brief: A nanotool can move a molecule into position in a microsecond. With a million operations per second and a billion atoms per assembler, it would take approximately 20 minutes for an assembler to build a copy of itself -- or a billion assemblers in 20 hours. A car can be built in a few hours.
The basis of nanotechnology has grown out of several years of research, innovation and enhancements in a number of different fields of science, engineering and manufacturing. Computer circuits are becoming increasingly small and chemicals more complex. Biochemists regularly acquire more knowledge on how to study and control the molecular basis of organisms. Meanwhile, mechanical engineers are continually improving their precision of design and production.
In 1959, Nobel laureate and Caltech physicist Richard Feynman suggested that it should be possible to build machines small enough to manipulate and control things on a small scale. His talk, "There's Plenty of Room at the Bottom," is widely considered to be the foreshadowing of nanotechnology. Among other things, he predicted that information could be stored with amazing density. Despite the fact that the power of computers was just being recognized, he had the foresight to see this as the future:
... I do know that computing machines are very large; they fill rooms. Why can't we make them very small, make them of little wires, little elements- -- and by little, I mean little. For instance, the wires should be 10 or 100 atoms in diameter, and the circuits should be a few thousand angstroms across. Everybody who has analyzed the logical theory of computers has come to the conclusion that the possibilities of computers are very interesting- -- if they could be made to be more complicated by several orders of magnitude.
He could even imagine how this would be possible:
Up to now, we have been content to dig in the ground to find minerals. We heat them and we do things on a large scale with them, and we hope to get a pure substance with just so much impurity, and so on. But we must always accept some atomic arrangement that nature gives us. We haven't got anything, say, with a 'checkerboard' arrangement, with the impurity atoms exactly arranged 1,000 angstroms apart, or in some other particular...
It is very hard to map the intricate brocade of a human mind onto such a machine with a reasonable resolution, but the formation of artificial intelligence or machine intelligence is anticipated to offer an approachable challenge. It maybe a device with full Turing-test interactivity which is capable of fulfilling our wish or would be an interlacing dense layer of memory around a shifting model of existential realty, and
The applications will be similar to the sales community, which will be able to get contact information from the potential customers and partners they meet during professional trips. Finally, to the medical community, the Smart Contact Chip will be presented as a possibility to store vital information in regard to the future patient's medical history, blood type or donor options. Influences on the purchase The decision to finalize the purchase will
.." And stated benefits include positive impacts in the areas of medicine, health and safety products as well as in the area of information technology and the entertainment industry. Furthermore nanotechnology has enabled technologies that allow the storing of energy as well as distribution, sensoring, processing and display technologies and as well "bioanalysis and drug delivery, robotics, and medical devices..." (Ibid) Research on the particles of nanotechnology reveal that since
Also, in the treatment of cardiovascular diseases, prevention of restenosis (post stent placement) and lung diseases, nanotechnology offers great scope for early diagnosis and effective drug delivery. In the case of blood diseases, systemic cytotoxicity could be reduced by targetting drugs to lymphocytes. Nanotechnology offers such targeted drug delivery system. [Buxton, 2006] Electronics Nanotechnology will usher a quantum leap in computing. In fact, with nanotechnology quantum computing will be a reality
From a materials development perspective, this is the important part: "The significance of this advance is this: if a material as expensive and rare as a diamond can be turned into a 'commodity,' then the applications of a variety of other materials, including everything from copper and ceramics to steel, can also be improved and utilized in different ways" (Uldrich, 2006, p. 17). From a pragmatic perspective, these developments
"Social messages sent by clothing, accessories and decorations can invoke social status, occupation, ethnic and religious affiliation, marital status and sexual availability etc." 4.2 Product innovation and technological changes The rapid rate of technological development set the course of development in numerous other domains, including apparel. In this order of ides, the technology adherent to the apparel production process is on its path from computer made designs to technologically improved materials'
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now