From a materials development perspective, this is the important part: "The significance of this advance is this: if a material as expensive and rare as a diamond can be turned into a 'commodity,' then the applications of a variety of other materials, including everything from copper and ceramics to steel, can also be improved and utilized in different ways" (Uldrich, 2006, p. 17). From a pragmatic perspective, these developments mean that the equipment parts and components currently in use in the electric utility industry can be "retrofitted" using nanoengineered materials to make them more efficient and durable. "For instance," Uldrich reports, "high-temperature and sulfur-tolerant nanomaterials can be manufactured to withstand the harsh conditions of coal-fired plants; or nanoscale ceramics coatings can be employed to protect steel, nickel and other metallic components from corrosion. The end benefit is that electric utility providers can improve their operating margins by making existing equipment both last longer and operate at higher levels of efficiency" (p. 17). Therefore, by providing scientists with the ability to create "tailor-made" materials at the atomic and molecular level, nanoengineering techniques hold enormous promise for mankind in the future in ways that remain undetermined as yet. As Senator George Allen has emphasized, though, "The fields of nanoscience, nanoengineering, and nanotechnology have the real potential to transform almost every aspect of our lives and commerce" (2005, p. 55).
Disadvantages Associated with Nanotechnology.
While the advantages of nanoengineering are numerous and new applications continue to be discovered, there are some potential disadvantages associated with these trends that must be taken into account as well. In this regard, although the potential for nanotechnology is enormous, researchers in the field remain cautious about promising "too much, too soon" (National Nanotechnology Initiative, 2003). According to Karoly and Panis, "As with all technologies, considerable lags can occur between basic scientific discoveries and full-scale commercial applications. However, for the 10- to 15-year horizon, nanotechnology is almost certain to generate evolutionary technological change that enhances the capability of existing products and lowers costs" (p. 96).
Concomitantly, many of the innovations in nanotechnology also carry with them significant social, legal, and ethical implications, as well as national security concerns, that need to be addressed as the technologies continue to evolve. According to these authors, "If public acceptance of the new technologies is slow to materialize, their adoption and diffusion may not match the pace of discovery" (Karoly & Panis, 2004, p. 97). Likewise, as Lemley (2005) cautions, "Nanotechnology is at a speculative early stage; only a few nanotech inventions have so far actually made it into commercial products. But the expectations surrounding the field are immense, ranging from a utopia of free energy and abundant materials that will be one of the 'major drivers of economic growth' in the foreseeable future to fears of environmental catastrophe" (p. 602). Finally, as Gulson and Wong (2006) report, "Numerous publications and reports have expressed health and safety concerns about the production and use of nanoparticles, especially in areas of exposure monitoring, personal use, and environmental fate and transport.... By design, many of the nanotechnology products in development or in use contain a metal (or metalloid in the case of arsenic)" (p. 1486).
Current and Future Trends.
Spending on nanotechnology research has reached unprecedented levels in recent years, with a record $9.6 billion being spent in 2005 alone; the respective sources for this funding were as follows:
Table 1.
Sources of Nanotechnology Research Funding in 2005.
Source
Amount
Government funding
4.61 billion
Corporate funding
4.465 billion
Venture capital
508.5 million
Source: The Nanotech Report, 2006.
Figure 1. Sources of Nanotechnology Research Funding in 2005.
Source: Based on tabular data in the Nanotech Report, 2006 at p. 37.
In response to the explosive growth in research in nanotechnology and the emergence of new products and materials designed using nanoengineering techniques, the U.S. Patent and Trademark Office has created a new technology cross-reference system that is designed to track nanotechnology products (Lemley, 2005). To date, these patents include improvements in existing industries, particularly semiconductors, where ongoing efforts at miniaturization have resulted in increased processing speed and memory capacity of computer chips have resulted in the development...
Nanotechnology, as its name implies, is, at its essence, the science of small things. However, nanotechnology is not so much the study of small things as it is the study of how to use small things to advance technology. "Nanotechnology is the engineering of functional systems at the molecular scale. This covers both current work and concepts that are more advanced" (Center for Responsible Nanotechnology, 2002-2008). It spans a very
Nano Technology and World of Quantum Physics Nano technology pertains to the restructuring and reconstruction of atomic and molecular nature. It involves studying the phenomena and materials of atomic manipulation to transform and construct new materials, devices, living organisms and improved technological systems that are
Nano Science - Tomalia In the lecture that Dr. Donald Tomalia presented in March, 2009 ("Traveling the Nano Road of Science, Art & Discovery"), he seems to be the most enthusiastic when he is talking about "dendrimers," which are polymers with a central and hollow core and tendrils. Because the core is hollow in a dendrimers it becomes a kind of pouch or cavity, he explains, and other molecules can be
Technology and Global Ecosystem An Analysis of the Implications of Technology and the Global Ecosystem The 21st century promises to usher in innovations in technology that cannot yet be imagined, and the advancements to date have provided many in the world with unprecedented standards of living. Improved methods of transportation and communication, combined with more leisure time than ever in which to spend it has resulted in many people developing a keen
2010; Chorny et al. 2010). This research is still quite new, however, and the question remains as to whether or not nanoparticles can truly serve as a replacement for stents by prohibiting plaque growth through a variety of means, including more targeted and longer-range delivery of pharmaceutical substances that destroy such build-ups and inhibit plaque deposits from forming. The efficacy of this approach has already been preliminarily demonstrated, but
Nanotechnology attempted to show the potential of this new technology and included the wide range of fields that are connected to the concept of the nanometer scale. These include machining, imaging, metrology or measurement, micromachines, instrumentation and machine tools, scanning probe microscopy, fabrication of components, nanoelectronics, molecular engineering, among others. (Journal Review: Nanotechnology) Another important step in the development of this technology in both a practical and theoretical sense was
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now