Multidrug-Resistant Tuberculosis
Tuberculosis is an airborne infectious disease caused by tubercule bacilli, spread from person to person (CDC 2011). It affects the lungs and other parts of the body, such as the brain, the kidneys and the spine. It is curable but an infected person can also die of it if he does not get proper treatment (CDC)
MDRTB
Multidrug-resistant tuberculosis or MDRTB is TB that does not respond to the action of at least two of the best drugs, isoniazid and rifampicin, the first-line treatment of TB (CDC 2011). Extensively drug-resistant TB or XDRTB is the rare type, which is resistant to these two major drugs, to any fluoroquinolone and at least one of three injectable second-line drugs. These injectable drugs are amikacin, kanamycin and capreomycin. These additional drugs are considered second-line treatment for TB. Those with XDR TB resort to less effective options. Among those affected are persons with HIV or other infections, which weaken the immune system. They are more disposed to TB and have a higher risk of death from TB. MDR TB spreads in the same way as TB, which is by coughing, sneezing, speaking or even singing. MDR TB germs remain in the air for several hours, depending on the environment. Those who breathe the air where these germs are suspended can inhale them and get infected (CDC).
Anti-TB Drug Resistance, MDR TB Prevention
Resistance to anti-TB drugs results from their wrong use or management (CDC 2011). This can occur with incomplete course of treatment, wrong treatment, wrong dose, long duration, unavailability of the drugs, or poor quality of the drugs. This is more likely in persons who do not take their TB medicines regularly or omit them as instructed by their doctor or nurse. TB can reactivate in them even after TB medicines if they come from places where MDR TB is common or prevalent (CDC).
MDR TB can be preventing by taking medications exactly as directed and without missing a single dose (CDC 2011). Travelers with this sickness should make sure they have enough medications to last their trip. Prompt diagnosis will help prevent the spread or worsening of the condition. The patient should follow recommended guidelines. Health care providers should monitor patient response and completion of therapy. Another prevention is avoiding exposure to those already infected or suspected of being infected. Crowded and likely places should be avoided as much as possible, such as hospitals, prisons and shelters for the homeless. A vaccine called Bacille Calmette-Gurin is used for children in some countries but not generally recommended in the United States for its limited effectiveness. Those who are exposed to persons with the disease should get a TB skin or blood test (CDC).
TB Control in the 21st Century
The TB outbreaks in the U.S. In the late 80s and 90s spurred the use of massive resources that would insure safe workplaces (Sepkowitz 2001). This greatly decreased the transmission and actual cases nationally. Federal standards were established to insure a working environment free of the bacilli for U.S. workers exposed. This measure may, however, be costly and detrimental to the delivery of care (Sepkowitz).
It was only in the 50s and 60s that the risk of exposure to TB among health workers caring for patients became a concern (Sepkowitz 2001). The discovery that the infection is air-borne was new at the time and caught little attention. Outbreaks of TB and MDR TB in the 80s and the 90s in U.S. And European hospitals called the attention it lacked. More than 20 health care workers got infected with MDR TB and at least 10 of them died. Hundreds of them may have remained carriers and pose serious risk of future activation of the illness. These outbreaks have been substantially controlled but their consequences persist and can still be felt. One consequence is the confusion on which of the many interventions are still effective. In addition, current control measures continue to bank on the outdated PPD test and the insensitive sputum AFB smear. Reliance on these inadequate diagnostic tests is unlikely to improve gains in TB control. As far as can be gleaned, TB control will lean on the low-tech measures of isolation of potential or suspected persons, masks, and shutting doors of potential patients in hospitals (Sepkowitz).
Extensively Drug-Resistant Tuberculosis
The first 74 cases of this new type were first reported in November 2005 by the U.S. National TB Surveillance System (Morbidity & Mortality Weekly 2007). The World Health Organization Emergency Global Task Force in October 2006 came up with a new definition of XDR TB. It is resistance to at least isoniazid and rifampin among the first-line anti-TB drugs, any fluoquinolone and at least one injectable...
5 per 100,000 in 1986. In 1994, the number of TB cases among residents of correctional facilities for 59 reporting areas had reached 24,361 (4.6% of the total reporting correctional population) (Braithwaite et al.). The incidence rate was 139.3 per 100,000 by 1993 and the unadjusted case rates for prison populations in many areas are significantly higher than the rates for the general population (Braithwaite et al.). According to these
Microbiology Please develop your own strategy for TB prevention. The Source of the Disease As mentioned in the above question, tuberculosis is a complex disease that has ravaged society for centuries. Whereas in the Western countries, it is now possible to receive treatment and become healthy despite contacting tuberculosis, there are areas of the world where, due to societal or environmental and political problems, it is difficult both to seek and obtain care,
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now