MLPS QOS vs. ATM QOS
Quality of Service (QOS) is best defined as the performance attributes of an end-to-end flow of data (Zheng, 2001). The particular elements of QOS depend on the information that is being transported. For example, QOS for voice defines limits on specific parameters such as delay, delay variation, packet loss, and availability.
In the past, networks were engineered based on providing fixed bandwidth for relatively short duration voice calls. Today, the traffic on networks is based on statistical or bursty data. Therefore, it has become necessary to develop new statistical models to build new networks.
Functions of QOS
QOS applications are used in networks for many reasons, including to:
Guarantee a fixed amount of bandwidth for various applications.
Control latency and jitter, and ensure bandwidth for voice.
Provide specific, guaranteed and quantifiable service level agreements (SLAs).
Configure varying degrees of quality of service for multiple network customers.
However, today's connectionless networks cannot provide absolute, hard QOS, only "relative" class-of-service transport (p. 211). For services like voice and video, which need a network with high predictability, this is unacceptable. MPLS adds a connection-oriented behavior to IP, making it connection-oriented so that hard QOS can be delivered.
Differences Between ATM and MPLS
Simply put, multi-label switching (MPLS) brings the traffic engineering capabilities of asynchronous transfer mode (ATM) to packet-based network by tagging IP packets with "labels" that specify a route and priority (Flannaghan, 2001). MPLS unites the scalability and flexibility of routing with the performance and traffic management of layer 2 switching. MPLS can run over nearly any transport medium, including ATM and Ethernet, rather than being tied to a specific layer-2 encapsulation. Because it uses Internet protocol (IP) for addressing, it uses common routing and signaling protocols.
MPLS was not designed to replace ATM but rather to compliment it. MPLS eases complexity by mapping IP addressing and routing information directly into ATM switching tables. The MPLS label-swapping paradigm employs the same mechanism that ATM switches use to forward ATM cells. In the case of ATM-LSR, the ATM forwarding component performs the label swapping function. Label information is carried in the ATM Header.
MPLS has the ability to run over routers in addition to ATM switches, while providing the control component for IP on both the ATM switches and routers. For ATM switches PNNI, ATM ARP Server, and NHRP Server are replaced with MPLS for IP services yet the ATM control plane remains preserved (Zheng, 2001). PNNI is still used on ATM switches to provide ATM services. Therefore, an IP+ATM switch delivers both ATM for fast switching and IP protocols for IP services in a single switch.
In the past, at a specific performance level, the price of a router was usually higher than the equivalent ATM switch. With IP+ATM LSRs, the forwarding performance is determined by the capabilities of the ATM switches, whereas the functionality is comparable to a router. Moreover, IP+ATM switches may also have similar price and performance characteristics to ATM switches.
Values of MPLS QOS and ATM QOS
As a means to join otherwise parallel IP and ATM networks without requiring essential changes to the characteristics of either, MPLS holds value to major carriers. Maintaining two separate networks (IP and ATM) has obvious disadvantages in terms of cost, whereas running IP over ATM fails to scale over time (Paw, 2002). These issues do not explain why carriers would want to converge all their traffic over an all-IP backbone. Often the main draw of MPLS is how it supplements IP through quality of service (QOS) and traffic engineering (TE).
MPLS is often referred to as a "QOS protocol," because, on its own, the standard does not have a complete means of quality assurance or traffic differentiation (p. 178). However, it does provide is an opportunity for mapping DiffServ fields onto an MPLS label, d for conveying this information through the core of the network in a way that is more efficient and easy to use with other protocols than a pure IP/DiffServ implementation would be.
MPLS also allows users to recognize and prioritize different types of applications, while reserving network resources to support of them and defining explicit routes to carry them out. MPLS standards rely on other protocols to achieve this result, defining only a generic need for an LDP to communicate between the label router nodes.
Still, the two main options that have been suggested for the role of LDP - CR-LDP (Constraint-based Routing) and RSVP-TE (an extended version of the Resource ReSerVation Protocol) - are similar in that they describe methods for allocating bandwidth and establishing dedicated virtual routes based on QOS rules or application-specific limitations (p. 196).
End-to-end QOS in an IP network has been of utmost importance for service...
(Cisco, 2009) It is reported by Nortel that it has been indicated by 86% of service providers that there is a high demand for Ethernet services today. The result is that carriers are seeking to fulfill the demand through "upgrading their metro networks to deliver cost-effective Ethernet-based services to their customers." (2009) MPLS is stated to have been invented for the express purpose of "...of solving the problem of bridging
Very High - IPSec works at the protocol level, independent of applications, therefore scalability is best-in-class Comparing the technological and operational benefits specifically in the areas of client access options, access control, client-side security, installation, and client configuration highlights just how differentiated the IPv4-based IPSec vs. IPv6 -based SSL protocols are from each other. In analyzing these differences, Table 3: Comparing Technological and Operational benefits of IPv6-based SSL and IPv4-based IPSec
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now