¶ … Mold Spore Trapping
Current Scientific Knowledge
People are exposed to aeroallergens in a variety of settings, both at home and at work. Fungi are ubiquitous airborne allergens and are important causes of human diseases, especially in the upper and lower respiratory tracts. These diseases occur in persons of various ages.
Airborne spores and other fungi particles are ubiquitous in nonpolar landscapes, especially amongst field crops, and often form the bulk of suspended biogenic debris. The term mold often is used synonymously with the term fungi. A more precise definition would specify that molds lack macroscopic reproductive structures but may produce visible colonies. Respiratory illness in subjects exposed to rust and dark-spored imperfecti fungi was described more than 60 years ago, and physicians worldwide now recognize a sensitization to diverse fungi.
Since fungus particles commonly are derived from wholly microscopic sources, exposure hazards are assessed largely through direct sampling of a suspect atmosphere. Because of their small size, fungal emanations present special collection requirements to ensure particle viability for culture-based studies.
Fungi have two basic structures. Yeast grows as single cells by central division of eccentric budding to form daughter units. Most other familiar fungi are composed of branching threads, 3-10 mcm in width, termed hyphae. A mycelium is an aggregate of hyphae. Hyphae are modified to bear the simple reproductive parts of many microfungi and form the structural tissue of fleshy fungi (eg, mushrooms, puff balls).
In general, familiar allergenic molds reproduce asexually. However, two large and distinctive classes, Ascomycetes and Basidiomycetes, also produce innumerable sexual spores for atmospheric dispersion. In its life cycle, a single fungus organism produces both sexual and asexual spores from morphologically different structures, respectively termed perfect and imperfect stages.
Statistics of Occurrence
There are 35 million persons with sinus problems and 15 million persons with asthma reported in the United States alone. Clinically, physicians know that a sinus infection can contribute significantly to the frequency and severity of asthma attacks.
Toxicity of Mold and Physiology of Affectation
The physiology of mucus in individuals with asthma is similar to that of nasal mucus. Mucociliary clearance (MCC) involves cilia and the layers of mucus on the ciliated epithelium and refers to the movement of particles along a desired path for maximum health. In the upper respiratory tract, cilia propel the mucus and its trapped bacteria and particles to the nasopharynx, where it drops to the hypopharynx and is swallowed. The stomach acid then disposes of the unwanted invaders.
In the lower respiratory tract, the cilia that line the trachea and bronchial tree similarly move the mucus blanket up the trachea and into the hypopharynx for swallowing.
The science of rheology investigates the makeup of this liquid and studies its viscosity and elasticity. Two layers of mucus are present over the ciliated cell; an outer, thick, viscoelastic, semisolid mucus layer, which the cilia do not strike directly, is found over a layer of watery serous fluid. Due to the lowered viscosity of the layer of watery serous fluid, the cilia are able to beat normally and to move the watery lower layer, thereby, affecting movement of the upper thick layer. Changes in these properties affect movement of the mucus blanket and play a major role in pulmonary and sinus disease. If the movement of the blanket is slowed, bacteria are able to multiply as the mucus thickens and stagnates.
Mold Infectious Processes
Fungal exposure can also come from a volatile compound (VOC) that a fungi or mold creates through primary or secondary metabolism that then becomes airborne. Note that primary metabolic processes are those necessary to sustain the life of an organism. These volatile compounds may be constantly created as the fungus consumes its food source during the primary metabolic process. VOCs can irritate the mucous membranes of the eyes and respiratory system.
Fungi that consume certain organic sources can release highly toxic gases. For example, a fungus that grows on wallpaper often releases toxic gas arsine directly from the wallpaper that contains arsenic pigments. Thus, fungi and molds can release dangerous materials when they break down the host material. This can cause mucous membrane irritation in sensitized individuals.
Research is demonstrating that fungal-volatile compounds may impact the "common chemical sense" which senses pungency and responds to it. This sense is primarily associated with the trigeminal nerve. The sensory and motor nerves respond to pungency by trying to hold the breath, discomfort, or through sensations such as itching, burning, and skin crawling. Changes in sensation, swelling of mucous membranes, constriction of the respiratory smooth muscle, or dilation of surface blood vessels may be part of fight or flight reactions in response to trigeminal nerve stimulation.
Reactions often include a reduced attention level, general disorientation, lowered reflex...
Air pollution pertains to substances and gases in the air that threaten health and life. Among these are pollutants and irritants, such as nitrogen oxides, sulfur dioxide, and carbon dioxide; particulates, volatile organic compounds (VOCs), toxic substances and some natural substances, like pollen. But most of the pollution comes from the by-products of industrialization - fossil fuel combustion, transportation, transportation, power plant emissions and those from other industrial processes. The
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now