Rupture of adjacent gas pipeline
Uncontrolled detonation of explosives
Gas leak from pipeline infrastructure
Drop of pipe from pipe lifts
Accommodation fire involving combustible construction LPG or Diesel
Diesel fire involving mobile fuel tanker
Uncontrolled release of LNG
Uncontrolled release of refrigerant gas
Uncontrolled release of by- product toxic gases (e.g. H2S, CO, CO2)
Plant fire involving pressure vessel of hydrocarbons
Uncontrolled release of product on production
Fire in process plant (e.g. Cable, lubrication oil, transformer etc.)
Gas explosion during maintenance or decommissioning
Fire from vapor cloud ignition during well operation
Fire from condensate ignition during well operation
Fire during well drilling
Liquid diesel release during well drilling
Fire or explosion of gaseous hydrocarbons at Production Facility or Hides Gas Conditioning Plant during operation
Fire, involving hydrocarbon liquids
Fire at Production Facility or Hides Gas-Conditioning Plant during construction
Explosion or fire along an onshore gas pipeline
Liquid hydrocarbons spill along an onshore liquids pipeline
Fuel spill during construction of onshore pipelines
Loss of liquid containment from the inner tank followed by a pool fire in the bund
Loss of vapor from the outer tank due to overpressure condition with Ignition
Condensate or LNG spill or vapor release during ship loading
Vessel grounds during inbound or outbound transit
Collision of LNG carrier, condensate tanker or tugboat with fishing boat long loss
LNG spill
An analysis of these hazards reveals that they have different severity indices in relation to the extent of damage they can cause to the facility, community and the business. Their rates of probability also vary. Their failure effect and hazard rates also vary. The failure effects of the various LNG hazards range from 5% to 90% which are considered critical and severe respectively in terms of severity class. This shows that a lot of care must be take to curtail this wide range of hazards resulting due to LNG incidents.
Risk Analysis
This is a systematic utilization of the available information used for the identification of hazards so as to estimate the level of risk to individuals, population, environment as well as property
Risk Assessment
The overall process that is involved in the risk analysis as well as risk evaluation and usually compares the risk analysis estimates
The Liquid Natural Gas Process Chain
It was until 1964 that the Liquid Natural gas followed a process of production, import, distribution and export that followed a due sequence as illustrated in the figure below.
The Processing of LNG form extraction to consumption (Source BV -2009)
The first step in the processing chain of a natural gas is extraction. Most countries with the large natural gas reserves export this product to other countries with no reserves. The total number of these countries is 15 but the total number of the LNG plants was 22 by the beginning of the year 2008. These countries include: Indonesia, Algeria, Egypt, Russia, Qatar, Yemen, Malaysia, UAE, Nigeria, Australia, Trinidad, Brunei and Norway. Although USA also produces the natural gas, it is mainly for domestic market as their reserve is not adequate to allow exportation. In most cases the gas supply may not be enough to meet intra-country needs hence the countries import the deficit from the countries with surplus.
Once a team of Geologists and geophysicists locate a field with potential to produce the gas, a special team is sent to drill the point the prospective field to establish the viability of the quantity of the gas and if verified, the next procedure is extraction as well as processing. It is important to note that before the commercial market of the gas was established, the gas which was associated with oil, was wasted in a flare but now its value has been established and being used as LNG. There is a procedure that the natural gas must pass through in order to be fit for sale to remove impurities that are usually associated with Natural gas, which is mainly methane. Such impurities include: ethane, propane, hydrogen sulfide (H2S), Carbon dioxide (CO2), Butane, Pentane, Helium and Nitrogen as well as water and oil. These impurities must be eliminated before liquefaction to become LNG.
The Liquefaction Plant
The second stage in the process is cleaning at the liquefaction plant where a series of processing steps ensure the removal of the impure and extraneous...
One benefit of using thoriated tungsten electrodes is that they require a much lower temperature for welding than pure tungsten. This means that exposure occurs at a relatively slow rate. Still, exposure must be limited. It is possible to minimize hazards by using thorium-free tungsten electrodes when possible. The American Welding Society (2003) lists cerium, lanthanum, yttrium, and zirconium as possible alternatives to the radioactive thorium. A second line of
When he was rehired in September, he received a month of training and again failed to pass the test standardized by the American Society of Mechanical Engineers Code, for at-LH welding again. When he was laid off after four months, along with five other welders, he had never passed the test Bechtel had designed for high level welders to qualify for the at-LH welding level. It appears that Bechtel corporation
American Welding Society Compare and contrast the confined space recommendations made by the American Welding Society with those found in Chapter 13 of the textbook. Chapter thirteen explains confined spaces, as open - topped areas of more than 4 feet in depth. The American Welding Society (AWS) defines this as small rooms, pits, vats, sewers and many other enclosed compartments. The differences between them, is chapter thirteen defines these areas specifically, based
Pipeline welding is a highly specialized field within the welding industry, pivotal for the construction and maintenance of infrastructure that transports oil, gas, water, and other substances across vast distances. The process of pipeline welding demands precision and skilled execution to ensure the structural integrity and safety of the pipelines, which are often subject to high pressure and corrosive substances (Nippes & Smith, 2001). Welding pipelines typically involves the joining
Local exhaust ventilation for the control of welding fumes in the construction industry -- a literature review" and this was published in the Annals of Occupational Hygiene. This paper notes that welding presents a challenge for industrial hygienists with respect to controlling exposure to fumes. The reason is that arc welders typically move from site to site, and these frequent changes in site make it difficult to set up
Confined Space, Electrodes, Chromium Confined spaces A confined space is an enclosed or partially enclosed space that is not primarily designed or intended for human occupancy, it has a restricted entrance or exit by way and size, fined spaces as well poor ventilation. Confined spaces can be below or above ground, it can be found in almost any workplace. A confined space, despite its name, is not necessarily small. Examples of confined
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now