¶ … Iso-Electric Point and Iron Content in Iron Hydroxide Impregnated Aluminosilicate-Based Geopolymers
Rahil Abou Saleh
Dr. Kiril Hristovski
Iron hydroxide impregnated aluminosilicate-based geopolymers (Fe-ASG) is a novel water treatment media currently under development for simultaneous removal of arsenic and inorganic contaminants. The goal of this study was to determine whether varied iron contents impregnated aluminosilicate impacts the surface charge in different pH conditions. The study tests for media types of virgin and iron impregnated ASG diluted in potassium nitrate (KNO3) for charge dispersion. pH of the sample was gradually adjusted using potassium hydroxide (KOH) and nitric acid (HNO3). Results demonstrated no significant relationship between iron content impregnated ASG and iso electric point, which suggests that surface area properties impacts the relationship.
I am especially appreciative of the guidance, encouragement, and patience exuded by Dr. Hristovski throughout the duration of this research project. Also I would like to give special thanks to Robert Sandoval for his tremendous support and for offering solutions to unexpected complications that I experienced with Microsoft excel formulas, providing training on the Zeta PALS instrument, for sharing his knowledge, and for ensuring an uninterrupted supply of the acid and alkaline solutions. Finally, I would also like to thank Denish Medpelli for providing me with the sample media and potassium nitrate.
Table of Contents
Abstract 2
List of Tables & #8230;
List of Figures & #8230;6
I. Introduction & #8230;8
II. Literature Review & #8230;. 12
III. Methodology 16
IV. Results and Discussion & #8230;.20
V. Conclusion 24
Works Cited 25
Appendix A 28
Appendix B 29
Appendix C 36
Table 3.1: Summary Characterization of Test Media 17
Table 4.1: Data Collected of Test Media Iso-electric pH 22
Table 4.2: Surface Area Comparison of Test Media iso-electric point pH 23
List of Figures
Figure 4.1: 95% Confidence Interval Curve 21
I. Introduction
Among inorganic impurities, some of the greatest threats to health are associated with the presence of high levels of toxic or heavy metals in drinking water. The sources of contamination and resulting health effects include a wide spectrum of various chemical makeups that form these compounds. Some of these inorganic compounds are present due to the presence of natural formations in the earth's crust. However, they can also originate from industrial and agricultural waste products which subsequently enter major water systems.
Geopolymers and their engineering applications have attracted significant attention of the scientific community. This is due to properties such as good thermal stability and high resistance to aggressive environments. Researchers are currently undergoing exploration in hopes of identifying economically feasible ways to remove these heavy metal contaminants. This study was conducted with the purpose of testing an absorbent new media technology that stands the potential to assist in the removal of these contaminants. The methodology and experimental design were constructed in hopes of providing insights into this new field of research.
Inorganic particles dispersed in a solution are electrically charged due to their ionic characteristic. When particles are dispersed they are surrounded by oppositely charged ions. This is considered the particles surface or firs layers. Then a second layer is formed which contains varying compositions of ion. Zeta potential is the term used to determine the electrical potential of the first and second layers of the particle. A zero electrical potential allows particles to aggregate and become unstable, thus there is no force to prevent particles coming together. Units used to measure zeta potential are in form of velocity (meter/second). A general rule of thumb is the higher the value of zeta potential, whether positive or negative; the more stable the system will be more dispersed. Geopolymerization is a developing field of research for utilizing solid waste and by-products. It provides a mature and cost-effective solution to many problems where hazardous residue has to be treated and stored under acute environmental conditions.
Aluminum silicate-based geopolymer (ASG) media is an economically feasible technology suited for water treatment systems, and is the most commonly used adsorbent for the removal of inorganic contaminants (Khale & Chaudhary, 2007). Studies have already examined the inorganic materials removal capabilities of modified ASG (Duxson, et al., 2007). However, the instability of the ASG modified media under various pH ranges may result in leaching of targeted contaminant. By contrast the oxide metals such as iron have proven to be more stable in a wider pH range and could potentially serve as a viable and economically attractive alternative.
Iron hydroxide impregnated ASG is an emerging technology currently under investigation for the potential use in water treatment facilities. Initial results have suggested that there are favorable inorganic...
76). As automation increasingly assumes the more mundane and routine aspects of work of all types, Drucker was visionary in his assessment of how decisions would be made in the years to come. "In the future," said Drucker, "it was possible that all employment would be managerial in nature, and we would then have progressed from a society of labor to a society of management" (Witzel, p. 76). The
LCA of Printer Cartridges Life Cycle Analysis and Environmental Impact of Printer Cartridges Printer cartridges are an important part of the world in which we live. Every day we purchase them, use them, and eventually need to replace them. The objective of this study is to examine the life cycle environmental impacts of printer cartridges. This assessment will not examine a particular type of printer cartridge, but will consider the life cycle
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now