An interesting view of the immune system with particular implications for the current review and collation of information is provided by the field of computer science. The immune system makes many series of continual trade-offs, distributing resources in a way that necessarily leaves certain vulnerabilities in the system as a whole while providing greater comprehensiveness in coverage and protection when necessary (Hofmeyr 1997). This makes the immune system an adaptive and continually evolving and self-improving system; with little outside direction it is capable of assessing changing needs, and altering itself not only in particular instances but even in some of its general responses in order to provide greater long-term efficacy for the task of protecting the human organism from disease (Hofmeyr 1997). This view of the immune system as a contained and self-informing system is not entirely accurate, but it is a very useful perspective for our purposes herein.
The Nervous System
The nervous system is much more simply explained than the immune system, at least in a superficial sense, though its effects and ramifications throughout the body are at times highly complex and entirely pervasive. With the brain as the primary source of direct instruction to other organs and systems, and the primary receiver of information from other areas of the body, the nervous system provides communication throughout the body. It is through the functioning of the nervous system that external and internal elements and changes can be responded to in both conscious and unconscious manners in order to (generally) maintain health and homeostasis.
Like the immune system, the nervous system is in a constant state of evolution, development, and reaction throughout life (Michigan 2002). Certain things occur on a conscious or from-conscious level -- the nervous system is involved in transmitting the images of words from the page to the brain where they are deciphered as one purposefully reads, and the muscles controlling the hand and fingers are fires as one turns the page -- and other functions are carried out wholly subconsciously, such as the actually focusing of the eyes and the control of the pupil size based on distance and light, respectively. The full array of bodily functions, from the continued beating of one's heart to the contraction of muscles in the digestive tract and all reaction to -- and indeed notice of -- sensory input, all depend on the proper and continued functioning of the nervous system. This means that disruptions to the nervous system can be hugely influential in the functioning of other bodily systems and functions.
Also like the immune system, though along very different lines, the basic architecture of the nervous system is divided into two parts. The central nervous system is made up of the brain and the spinal cord -- a bundle of nerves running through the spinal column; these two organs are responsible for originating, coordinating, and disseminating most communications throughout the body (Ophardt 2003). Specific chemical messengers, called neurotransmitters, travel between nerve cells in the brain in a cascade action that produces electrical current and triggers other nearby neurons in a highly specific manner, producing the (generally) desired actions and adjustments in the body and its functions (Ophardt 2003).
The nerves running from the central nervous system, i.e. The spinal cord, to the many organs and muscles of the body, constitutes the second part of the nervous system's basic architecture, and is known as the peripheral nervous system (Michigan 2002). While there are different types of cells in the central nervous system, particularly in the brain, the peripheral nervous system is composed only of nerves -- bundles of neurons, which are used only for the transmission of electric impulses through certain chemical chain reactions and cascade effects (Farabee 2001; Ophardt 2003). The central nervous system contains both neurons and specialized glial cells that insulate and protect neurons in the brain; some similar functions are provided by the myelin sheaths that surround neurons in the peripheral nervous system (Farabee 2001). These myelin sheaths not only protect the nerve cells, but they also serve as electronic insulators, increasing the speed of transmission of the signals sent both towards and away from the brain throughout the nervous system (Michigan 2002; Farabee 2001).
Given the nervous systems spread and relative simplicity, it is fairly easy to see how issue sin the nervous system would have major impacts on the functioning of other organ systems, including the immune system. On the other hand, as the immune system operates largely via chemical messengers in the blood and lymph systems, bypassing much of the communication network that is the nervous...
Crime In the beginning the main focus of the drug addiction theory was on the habituated pleasure reinforcement as well as the potential of the drug for the reward. Drug affects the dopamine receptors that are present in the brain and the individual is flooded with the desirable emotions by using dopamine, these desirable emotions are considered to be the reward for using the substance (Pinel, 2009). When the relationship of
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now