Hydroelectric vs. Geothermal Electricity Production
In a world that is becoming ever-increasingly focused on the production of energy and fuel, the methods of hydroelectric electricity production and geothermal electricity production have become topics in which the public is significantly interested. In beginning to understand the future of each of these types of electricity production, one must first understand the basic definition of each, as well as the basis for their implementation into the world market. In understanding how each mode of electricity production works, one can begin comparing and contrasting the two in order to understand which modes of production are best utilized in certain situations, as well as to understand the future prospects of each form of production.
Hydroelectric Electricity
Hydroelectricity is the term referring to electricity generated by hydropower, which is the production of electrical power through the use of the gravitational force of falling or flowing water, which is the most widely used form of renewable energy (Wade, p. 653). As hydro means "water," and hydropower means "water power," hydroelectric power is electricity generated using strictly water power (CEC, p.1). Such a method for harnessing power has been utilized throughout history, using water power to help them with their work, and in recent decades, the move to harnessing water power in order to produce electricity has been significant. Hydropower harnesses water power to create reliable, clean and plentiful renewable energy (DOE: Hydropower, p. 1). Once a hydroelectric complex is constructed, the project yields no direct waste, and has a considerably lower output level of the greenhouse gas carbon dioxide than fossil-fuel-powered energy plants (Tenner, p. 92).
Hydroelectric power is largely processed in five different ways: conventionally, through pumped-storage, with run-of-the-river stations, tide stations, and underground stations. These processing standards are generally divided into two different distinctions: those having the capacity to process power for large geographical areas, and those that do not. In viewing the two facets of production that are most commonly used and have the ability to create electricity for vast areas -- conventional and pumped-storage -- one can better understand the process by which power is generated. Most hydroelectric power comes from the potential energy of dammed water driving a water turbine and generator, and the power extracted from the water depends on the volume and on the difference in height between the source and the water's overflow (Nature, p. 420). Such power is created in conventional stations, otherwise referred to as dams. With pumped-storage hydroelectricity, electricity is produced by moving water between reservoirs at different elevations, with times of low electrical demand yielding to the pumping of water into the higher reservoir (Brennan, p. 3). When there is higher demand, water is released back into the lower reservoir through a turbine, and in this manner, pumped-storage systems currently provide the most commercially important means of large-scale grid energy storage and improve the daily capacity factor of the generation system (Blakeway, p. 218).
The following three production stations generally service smaller geographical areas, but utilize the same basic components that make hydropower so efficient. Run-of-the-river hydroelectric stations are those with little to no reservoir capacity, and these stations are built in a manner that allows water coming from upstream to be used for generation at that moment, or be allowed to bypass the dam entirely, allowing such stations to power generally smaller locations. Similar to the aforementioned power station, tidal power plants are generally only able to cater to a small geographical location, utilizing the daily rise and fall of ocean water due to tides to generate power. Finally, with an underground power station, the facility makes use of large natural height differences found between two waterways that occur in nature. Such facilities are generally found near features such as a waterfall or mountain lake, and are constructed with an underground tunnel that takes water from the high reservoir to the generating hall built in an underground cavern near the lowers point of the water tunnel and a horizontal tailrace taking water away to the lower outlet waterway (Graham, p. 52).
Geothermal Electricity
Geothermal electricity, on the other hand, is electricity generated from geothermal energy found within the Earth. The word "geothermal" comes...
Capturing and Storing Energy: From Fossil Fuels to Renewable Resources One of the most interesting challenges in energy production is not how to find energy sources, which are abundant, but how to capture and store the energy that is available. For years, energy capture and storage has focused on the availability of fossil fuels and how those resources could be translated into usable energy sources. However, the demand for energy is
It now applies to a wide range of generation technologies, including but not limited to solar thermal electric, photovoltaics, wind, and geothermal electric (DSIRE). For solar systems, the credit is "equal to 30% of expenditures, with no maximum credit. Eligible solar energy property includes equipment that uses solar energy to generate electricity…" (DSIRE). For small wind turbines, the credit is "equal to 30% of expenditures, with no maximum credit"
Energy in the United States In terms of total use in the year 2010, the United States was the second largest consumer of energy (Barr, 2012). After Canada and a couple of small nations, the United States comes at the seventh position in the per capita energy consumption (World Resources Institute, 2001). In this energy consumption, the energy that is used overseas for the production of the retail goods used in
Figures 3 and 4. Vertical Axis and Home Wind Turbine Configurations. Sources: http://www.symscape.com/files/images/flowind_darrieus.img_assist_custom.jpg, and http://techlime.com/wp-content/uploads/2008/04/home-wind-turbines.jpg. Current and Future Trends in Wind Power Applications. While the foregoing wind power initiatives would indicate that wind farms are already contributing a large percentage of the nation's energy needs, the research shows that this is far from the case. In this regard, the current total respective renewable energy consumption rates based on source in the United States
This is mainly done by the plants using non-renewable sources of energy. The plants also differ in the competency of the amount of watts produced. Due to the extent of sources used, some plants produce enormous amounts than others. A good example is the nuclear plant at Crystal River; it contributes to 15% watt production compared to the solar plant at Indiantown that contributes to 3% of power production. Research
Alternative Energy Sources Concerns that have been raised regarding energy security have been occasioned by fears about oil and other fossil fuel depletion; reliance on foreign sources of energy; geopolitics; developing countries' energy needs; environmental concerns; population dynamics; and renewable and other alternative energy sources (Shah, 2011). This essay seeks to establish whether alternative energy sources can help ease human reliance on oil. It is important that governments invest on alternative sources
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now