¶ … Genomics and Implications for the Future
The Human Genome Project has completed its monumental mapping of the genetic sequence in human DNA, and the field of genomics is taking advantage of these initiatives and innovations in technology to pursue scientific inquiries that could not have been imagined just a few years ago. More importantly, perhaps, new applications are being discovered based on the growing body of scientific evidence being developed by this emerging science. To determine what genomics is and how it is being used today and may be used in the future, this paper provides an overview of the biochemistry involved in the study of genomics, followed by an analysis of current and future trends in this field. A summary of the research will be provided in the conclusion.
Review and Discussion
Background and Overview.
Today, genetic-engineering techniques are increasingly being applied to a growing number of life forms, including insects, farm animals, marine organisms, trees, and even human beings. According to Kelso and Schurman (2003), "Perhaps more important, technology development has been revolutionized -- and greatly accelerated -- by the advent of genomics and the synergies that have emerged between molecular biology, recombinant DNA techniques, and the bioinformatics sector" (p. 4). In the spirit of "we all stand on the shoulders of the giants who go before us," these recent breakthroughs in genetic engineering can be traced to the discovery by scientists James Watson and Francis Crick in 1953 when they described the double helix shape of DNA, the building blocks of all life (Genome news, 2003).
During the years thereafter, it was still necessary to convince Congress that the genome should be mapped; at that time, James Watson and others predicted that one day soon, a complete text that would explain "who we are" would be completed. In fact, in April 2003, just 50 years after their discovery, though, the Human Genome Project was completed -- more than 2 years ahead of schedule, with fully 99% of the human genes successfully identified (Genome news, 2003). According to Dooley (2004), "With its sequencing completed in 2003, scientists set their sights on determining the basic structure and inner workings of the human genome. This movement has spawned numerous new scientific specialties that have been supported by the growth of data-generating technologies. One of these interdisciplinary fields, functional genomics, is devoted to linking gene expression to function (or dysfunction) in cells, organs, and tissue" (934). Despite these advances, though, as Watson and other leading genomics scientists have pointed out, genomics is in practice exceedingly complex, and any interpretations of the findings that result from these investigations will be necessity be equally complicated. The New York Times of June 27, 2000, highlighted the successful cracking of the genetic code on its front page, but the headline of the "Science Times" section was more realistic about what was ahead for the scientific community: "Now the Hard Part: Putting the Genome to Work" (Goodman, Heath & Lindee 16).
Not surprisingly, genomics-based initiatives remain the focus of much research into how these findings can be applied to an enormous range of human endeavors -- including reshaping these fundamental building blocks of the human animal, a fact that has not escaped the attention of medical ethicists who suggest that such research is violative of the sanctity of nature's sole domain. Notwithstanding these controversies, though, the fact remains that genomics is a growing field and new applications are being identified every day that will have a profound impact on mankind in the future. To better understand what the issues under debate are, an examination of the biochemistry of genomics is provided below.
Biochemistry of Genomics.
All genes contain DNA, or the series of chemicals that determine all aspects of an individual's characteristics, and genomics seeks to determine how and why genes function they way they do; however, the field of genetic engineering uses a wide range of methods that employ a number of similar yet different terms, but all of them come into play in the field of genomics. In this regard, genomics has been defined as the field of automated sequencing and analysis of genes; bioinformatics refers to the inference of genes' functions from information about known DNA sequences in other organisms; and proteomics refers to the science of protein functions and their relationship to genes; however, all three of these fields rely heavily on the new information technologies (Kelso & Shurman, 2003). In addition, the field of genomics is, by definition and function, interdisciplinary (Winter, 2001).
The emergence of these new sciences and their application to plant and...
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now