Genomes and Comparative Genomics
Over the last decade we have achieved rapid strides in the field of genetic engineering. The study of molecular biology has been fairly advanced mainly aided by the unprecedented growth in information technology. Today bio-informatics has opened new vitas for us and we are already progressing in investigating and in the comparative study of genomes. This has shed new light up on our knowledge of the evolutionary process and the important concepts such as protein folding and selective expression, which have so far eluded our understanding, are beginning to unfold. Let us have a brief overlook of the subject.
The Role of DNA
One of the greatest achievements of the twentieth century has been the unraveling of the mysteries behind the DNA and the mechanism of protein synthesis. Genes are the fundamental units of biological inheritance and are made up of Deoxyribonucleic acid (DNA). Genes are responsible for the manufacture of proteins that direct the different bodily functions. This idea of the important role of DNA in protein synthesis opened new possibilities in the sense that, by way of artificial insertion of DNA material, it is possible to stimulate the synthesis of the required protein. One of the complex and at same time most elegant aspects of our lives is the process by which instructions pertaining to protein synthesis is encoded in the DNA and the perfect manner in which the cytoplasmic components interpret them and assemble the proteins. The important point is that the order of assembling the amino acids (in the process of protein synthesis) is dictated by the order of the bases (ATCG) for that particular gene.
Scientists refer to the whole process of issuing instruction and protein synthesis as transcription and translation. The instructions in the DNA are first transcribed and then translated or converted into proteins. The procedure is a follows. The DNA instructions are transcribed into another molecule called mRNA, which is actually a copy of the DNA. The next step is the translating of the instructions in the mRNA molecule into protein form. mRNA instructions are actually in the form of words, which consist of groups of three bases called as codon. These codons in turn direct the cellular machinery in the assembling the protein. (Adding amino acids at the appropriate place).
The study of mRNA molecules holds the key to understanding the process of gene expression. The expression of a gene depends on the presence of the mRNA molecule within the cell. Whenever a particular protein is in demand the gene constructs a mRNA molecule. The mRNA molecule can be separated from the other constituents of the cell by centrifuging process. Today genetic engineers are able to isolate mRNA molecules that contain the genetic information for the synthesis of the protein molecule. These mRNA molecules can then be transferred to the specific DNA sequence.
This process has proved to be a huge bottleneck for researchers involved in genetic engineering. But soon it was found that the difficulties associated with transferring the mRNA back into the DNA sequence could be overcome by using enzymes. The process first identified in viruses involved the use of enzymes that convert mRNA into DNA. These enzymes are called as reverse transcriptases because they reverse the process of transcribing DNA into mRNA. Thus by adding reverse transcriptase enzymes to mRNA strands we will be able to create DNA strands. There are some other enzymes like the DNA polymerase that are used to convert the single strand DNA to its original double helical structure. So the process of synthesizing complementary DNA (cDNA an exact replica of the mRNAs) has become much easier. [G.R Chhatwal, 86]
History of DNA Sequencing
Fredrick Sanger was the first person to develop a satisfactory DNA sequencing technique. Sanger's technique was based on copying the DNA strands using deoxyribonucleic acid triphosphates and terminating the strands with dideoxyribonucleic acid triphosphates. Then using x-rays he was able to arrive at the location of the nucleotides bonds within the strands. However the process was highly cumbersome and time consuming one taking years together to complete the sequencing process. Sanger used his technique and successfully sequenced bacteriophage PX174 in 1977(REF) and in sequencing bacteriophage Lambda in 1982. The first complete genome to be sequenced was the human mitochondria genome in 1981. However Fleischmann and his group hold the credit for the first ever sequencing of a living organism when they successfully sequenced the DNA of Haemophilus influenzae in 1995. Scientists have been successful in sequencing more than a hundred different organisms and research is further proceeding with already a great amount of work done in arriving at the human genome.
Over the years Sanger's method...
While the bacterium has been recognized to cause Johne's disease for more than 100 years, methods for satisfactory diagnosis, treatment and prevention are lacking" (Scientists Crack Genome Sequence Of Major Dairy Pathogen 2002). This problem would not have aroused studies and researches a few centuries ago. This study would not have been conducted in other countries because almost all the world's countries and their people possess unifying attributes that
Genomics and Implications for the Future The Human Genome Project has completed its monumental mapping of the genetic sequence in human DNA, and the field of genomics is taking advantage of these initiatives and innovations in technology to pursue scientific inquiries that could not have been imagined just a few years ago. More importantly, perhaps, new applications are being discovered based on the growing body of scientific evidence being developed
Identifying Autism Loci and Genes by Tracing Recent Shared Ancestry. Science 321(5886): 218-23. Introduction This article begins with a discussion of autism spectrum disorders and the social and mental impairments that typify the disorder, setting up an approach that is inherently humanistic and person-centered. Despite the highly technical and quantified nature of the ultimate research question and data collected and analyzed in this study, this person-centered focus and tone is observable
Evolution and Development of Dog Species: According to the findings of previous research, it has been suggested that dogs are paedomorphic wolves that have evolved through heterochrony. Heterochrony is described as an evolutionary technique that produced diversity through perturbations of the timing and rate of development, which needs very minimal genetic innovation. Consequently, this evolutionary technique is considered to be the most common mechanism in the generation or production diversity (Drake,
Prenatal genetic testing can prove useful to many expectant mothers under certain conditions. For example, those with inherited illnesses, those with children born with severe defects, those who are high risk of delivering a still born, and women over the age of 34 all present as likely candidates for prenatal genetic testing. It can help them identify what may be wrong with the fetus and what steps to take if
Translational medicine is a new discipline, which covers studies on basic science, on human investigations, non-human investigations, and translational research (Mankoff et al. 2004). Basic science studies address the biological effects of medicines on human beings. Studies on humans discover the biology of disease and serve as foundation for developing therapies. Non-human or non-clinical studies advance therapies for clinical use or use in human disease. And translational research refers to
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now