Genetic Engineering
The eradication of global hunger is a noble goal, and implies a human society that has progressed to a point where all humans are engaged in some form of implicit social contract with each other. We care about global hunger because we do not want to see other humans starve, regardless of the circumstances that brought about their hunger. Before tackling the issue of global hunger, however, we must admit that people in many parts of the world are born into Hobbes' state of nature, with no inherent rights to even the basic necessities of life, including food. Eradicating global hunger means that somebody, somewhere must fill that in providing the necessities. This paper will explore the role that genetic engineering can play in ending world hunger.
Assumptions and underpinnings
If genetic engineering is to eradicate world hunger, we must understand how it can do this. We know that trade is a means by which nations without adequate food supplies can gain food -- city-states like Hong Kong, Macau and Singapore have long relied on trade to feed their people. We can also assume that nations are going to produce commodities in which they have a comparative advantage, and through this process resource allocation will be generally efficient. If genetic engineering is to eliminate world hunger, we have to assume that those areas that have a comparative advantage in food production will do so, and that through international trade those goods will arrive in the hands of those in need. These are pretty big assumptions, and there is no shortage of anecdotal evidence of systemic inefficiency in food production and distribution. But for the sake of argument, we will begin with the mindset that in theory we will adequately distribute food from nations with a surplus to nations that have insufficient food supplies.
The Population Problem
The biggest reason that we still have world hunger, all other factors being equal, is that the human population is rapidly increasing. The population of the Earth was 2 billion in 1927 and 3 billion in 1960, and just fifty-two years later sits at over 7 billion (Rosenburg, 2012). This rapid increase in population has resulted in a situation where technological advances in agricultural, an increase in agricultural land under development and improvements in world trade have not yet come close to eradicating global hunger. Compounding the problem is that when people are lifted out of poverty, they eat more, and thus recent economic improvements, particularly in Asia, have put additional pressure on food production to meet this new demand, even without feeding a single additional hungry person. Clearly, major increases in crop yields are going to be needed to meet future demand for food, given these trends (Lobell & Asner, 2003).
New Threats
The Lobell and Asner study was primarily focused on how climate change would affect the production of certain crops in the United States. Studies like this are critical to understanding the role that genetic engineering could have in the future on food supplies. Not only will planting decisions and output forecasting be affected, but genetic engineering can help to create plants that are better able to adapt to a changing climate. Wang, Vinocur and Altman (2003) note that agricultural engineers are focusing some of their genetic engineering efforts on developing crops that are better resistant to anticipated threats from drought, salinity, extreme temperatures, chemical toxicity and oxidative stress. Such adaptations are one way to counter the effects of a changing climate on crop yields, which otherwise would be expected to be reduced in the short run. To this point, genetic engineering of crops has been utilized to increase yields and resistance to chemicals, insects and other threats.
Effectiveness of Genetic Engineering
There is no consensus, however, as to how effective genetic engineering is with respect to managing new threats. While there has clearly been an increase in world food supply since 1960 despite no meaningful growth in arable land (Evans, 1997), this is attributed more to the use of fertilizer than genetic engineering. There are two problems with fertilizer going forward, however. The first is that fertilizer use has long been subject to diminishing returns (Ibid) and the second is that petroleum is required to produce this fertilizer. A century from now, with billions more people in the world, there will be significantly less oil and therefore less fertilizer. Genetic engineering may ultimately be required to close this gap.
Lobell and Asner (2003) imply, however, that genetic engineering to increase crop yields will also be subject to the law of...
Nanomachines The Science of molecular size machines and its engineering designs and constructions until late 1980s were not considered practicable. Nanotechnology, according to the leading exponents of that time were neither feasible nor viable, due to the fact of total structural difference of the constituent of nano-molecular device i.e. Atoms from the mechanical objects of every day life. The essential components of engineering mechanics i.e. cogwheels, gears or motors could not
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now