Verified Document

Genetic Engineering Is A Tool In The Term Paper

Genetic Engineering is a tool in the hands of man to break the species barriers to create a more productive and controllable world. This is a delicately balanced issue and unless we exercise enough restraint and responsibility we may end up endangering ourselves and all other forms of life. Genetic Engineering is the science of gene manipulation. Genetic information is specific to each and every organism in the world. Genetic Engineering is in effect the science that deals with the controlling of the expression of the individual genes within a cell. Today the advancements in science have made possible the selective study of the individual segments of the DNA of a particular species, to isolate them and to infuse them in the DNA of a totally different organism. Genetic Engineering can be viewed as a breakthrough in the study of organisms that effectively disintegrates the distinctions that exists in the different species of the world. The advancements in recombinant DNA technology have expedited the research in genetics. Let us analyze this subject in a little detail and in the process analyze its pros and cons and its future implications.

Importance of Genetic Engineering

Since 1980 when the first artificially synthesized Insulin was made available for treating patients the technique of coercing the microbes to synthesize a variety of useful substances of medical value has attracted the attention of microbiologists all over the world. Today genetically engineered microbes continue to produce a wide variety of substances like interferon, vaccines, growth hormones, etc. With this remarkable breakthrough in cell biology scientists are for the first time vested with the keys to unravel the mysteries of complex process of life. Genetic engineering is a tool in the hands of the researchers to manipulate the genes and induce the cells to produce substances that they never made before. Apart from the medicinal value there are some ethical issues to be considered and genetic engineering has become a debatable topic over the last few years with scientists vying with each other to alter the basic code of life.

The first and the important step in creating a genetically engineered bacterium or any other host is to isolate the gene from the cell. All human cells share the common genetic information between them but the difference lies in the fact that the expression of the genes that are responsible for the synthesis of the specific proteins is different and is related to the environment of the cell. John Sulston, former director of the Sanger Centre says, "You cannot define the function of genes without defining the influence of the environment. The notion that one gene equals one disease, or that one gene produces one key protein, is flying out of the window." [Venter Craig]. It is this selective expression property of the gene that is used by scientists to identify and trace down the individual genes.

Genes Expression and Cell Behavior

Gene manipulation is defined variedly in different countries. "The formation of new combinations of heritable material by the insertion of nucleic acid molecules, produced by whatever means outside the cell, into any virus, bacterial plasmid or other vector system so as to allow their incorporation into a host organism in which they do not naturally occur but in which they are capable of continued propagation" is how it is defined in the United Kingdom. [OLD.R.W, 1]. The genes in fact directly control and regulate all the natural body processes. Different cells in the body perform different actions and this is due to the selective expression of the genes. For example cells in our brain do not produce insulin while those in our liver produce it. Similarly bone marrow cells produce Red Blood Corpuscles while liver cells don't do the same. To understand this peculiar cell behavior we have to look into the process that takes place in the cell that either activates the gene or deactivates it.

The key to understanding the process of gene expression is to study the mRNA molecules. This is so because cells that promote the expression of a gene have the mRNA molecules within them. The gene constructs a mRNA molecule whenever the particular protein that it creates is needed by the cell. Extricating the mRNA molecules from the other constituents of the cell is an intricate process in itself but it is a lot easier than identifying the different strands in the chromosome. Usually a centrifuge performed on the cell constituents separates the different molecules. These isolated mRNA molecules contain the genetic information required for the synthesis of the corresponding protein molecule....

Now that the mRNA is isolated the next step is to transfer this back in to the specific DNA sequence.
Over the years this particular area has been the bottleneck for scientists involved in genetic engineering. However the answer was found and the use of enzymes effected the trick. This method was first detected in viruses. The essential idea is to use enzymes that convert mRNA into DNA. These enzymes are called as reverse transcriptases because they reverse the process of transcribing DNA into mRNA. Thus adding reverse transcriptase enzymes to human mRNA strands will create Human DNA strands. Finally some other enzymes like the DNA polymerase used to convert the single strand DNA to its original double helical structure thereby completing the process of synthesizing the complementary DNA (cDNA an exact replica of the mRNAs). [Chhatwal G.R, 1998,99]

Protein (the Building Block)

Proteins are fundamental building blocks of the cell. They are nothing but different combinations of Amino acids and different proteins perform totally different functions within the human body. Hormones, Enzymes and antibodies are all different kinds of protein molecules. The synthesis of proteins in the cells is achieved by means of the genes. Each gene is actually a specific segment of the DNA having instructions to create a particular type of protein upon request. Request for the synthesis of proteins is again controlled by what are known as promoters that are unique for each gene. It is the function of these promoters to either activate or deactivate the expression of the individual genes and hence the production or not of the corresponding proteins. All genetic engineering techniques are invariably concerned with manipulating and controlling these promoters and hence the gene behavior. [Synthesis/Regeneration Magazine]

Gene Cloning

Gene cloning constitutes the core of genetic engineering. By means of cloning scientists are able to develop an exact replica of the gene or the all-important proteins that they produce naturally. Usually the following steps are involved in a cloning process. Firstly the reguired gene has to be extricated from the chromosomes and for this scientists use certain enzymes that would facilitate the breakage of the bonds between the different strands. In the genetic parlance these enzymes are called as the 'restriction enaonucleases'. There is also another way to create the gene artificially by using what is called as the gene machine. The next step in the process is to insert the extricated gene into a vector so that the gene can be accepted by the host such as a bacteria or virus. Once this is done these microbes can be cultured to get multiple copies of the genes. [Chhatwal G.R, 1998, 88]

The procedure of cloning however is much more complicated and involves refinement at every stage of the process. Genetic engineers refer to this as 'enrichment technique'. Invaluable medicinal substances (Insulin) can be synthesized by genetic engineering. Vectors can be used to incorporate special feature in the clones and to restrict the growth of all other hosts which do not have this property. For example we can choose to incorporate the property of drug resistance in the host and in order to selectively isolate them or purify them we can culture the bacteria in a medium of antibiotics. This way only those hosts that are incorporated with the special genes will grow and so we obtain an unadulterated and pure bacterium with drug resistance properties.

Plasmids as Vectors

Plasmids are nothing but small circles of DNA inside the bacterial cell. They are present outside the chromosome and hence are called extra chromosomal. Generally Plasmids are double stranded circular DNA molecules. Today Plasmids are considered as the ideal cloning vehicles. The important properties to look for in a Plasmid (as a cloning vehicle) are that they must have low molecular weight and have the ability to infuse the phenotypic traits on the host cell. [OLD.R.W, 46]. Another natural and inherent property of the Plasmid is that it can readily pass on from one cell to the other. This property of the Plasmid to readily enter into any cell is very important for Genetic engineering. This allows scientists to extract Plasmids from the bacterial cell and 'Stitch' the cDNA into it. Once this is done the Plasmid by its natural ability to penetrate into the cell finds its way back into the bacteria.

Enzymes are again the key to whole process called 'Stitching'. Restriction enzymes are very meticulous in their purpose and they do their function very precisely. Today there are more than 300 restriction…

Sources used in this document:
Bibliography

OLD.R.W, Primrose S.B, "Principles of Gene Manipulation: An Introduction to Genetic Engineering," 1994, Fifth Edition, Blackwell Science, pg 46

Chhatwal.G.R "Textbook of Biotechnology," Anmol Publications Pvt Ltd., First

Edition, 1998 Reprint, pg [101]

Venter Craig', "GE fantasy shattered by human genome project," Accessed on December 12th, 2002, http://www.btinternet.com/~nlpwessex/Documents/GEfantasy.htm
Chiou Arthur, "Biochips Combine a Triad of Micro-Electro-Mechanical, Biochemical, and Photonic Technologies," Accessed on December 12th, 2002, http://www.spie.org/web/oer/march/mar00/biochips.html
Designed by the "TheHostPros," "Motorola-Packard Mass Producing Bio-Chips" http://www.rense.com/general/biochips.htm
Union of Concerned Scientists', "Risks of Genetic Engineering" Accessed on December 12th, 2002, http://www.ucsusa.org/food_and_environment/biotechnology/page.cfm?pageID=346
Cite this Document:
Copy Bibliography Citation

Related Documents

Genetic Engineering of Food "Protagonists
Words: 4546 Length: 14 Document Type: Term Paper

Harry Collins with Delta & Pine Land asserts that "protection systems" (the terminator seed) will "…help farmers in all areas of the world gain access to the most technologically advanced tools and products" allowing them to produce "more profitable crops" (Shand, 3). Collins goes on to insist that "traditional farming practices" -- using saved seeds to plant next season's crops -- brings "a gross disadvantage to Third World farmers" because

Genetic Engineering Human Cloning
Words: 905 Length: 3 Document Type: Research Paper

controversy with regard to genetic engineering and the exact effects it has on the social order. Some people consider this domain to provide the world as a whole with a window for opportunity while others believe that it goes against everything that mankind stands for. The clinical benefits associated with such technology are downright impressive and it is very probable that it is going to have a particularly positive

Genetic Engineering Is One of the Major
Words: 979 Length: 3 Document Type: Essay

Genetic engineering is one of the major discoveries of the 20th Century and an important topic in biology because of its link on broad understanding of life development. While its referred to as genetic modification, this field provides humanity with the ability to tackle hunger, combat diseases, and even regulate human behavior. The importance of this issue to the biological field is attributed to its far-reaching implications that have

Ethics of Genetic Engineering in February 1997,
Words: 870 Length: 3 Document Type: Term Paper

Ethics of Genetic Engineering In February 1997, genetic engineering was thrust into the spotlight when Dolly, the first mammal clone, was born in Edinburgh, Scotland. The world has had heated discussions over the issues surrounding genetic engineering ever since. The selective engineering of genetics is invaluable to the health and happiness of humans. The importance of this issue has played second fiddle to the arguments, for and against genetic engineering. The

Cloning and Human Engineering the
Words: 2177 Length: 8 Document Type: Term Paper

Thinkers and writers like Jeremy Rifkin, author of the Biotech Century: Harnessing the Gene and Remaking the World, voice their opposition to cloning. He and others are concerned that cloning with provide unethical incentives. "...we believe that the market for women's eggs that would be created by this research will provide unethical incentives for women to undergo health-threatening hormone treatment and surgery." (Statement in Support of Legislation to Prohibit

How Should Society Deal With Information About the Genetic Code
Words: 2159 Length: 6 Document Type: Research Paper

cheap genomic sequencing has widespread and unforeseen cultural, political, and societal implications that have only just begun to reverberate through the human population at large. Genomic sequencing not only reveals some of the causes and connections behind certain diseases or disorders, but also puts the lie to certain forms of bigotry which assumed that dramatic phenotypic differences represented a similarly dramatic genetic or biological difference (put another way, genome

Sign Up for Unlimited Study Help

Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.

Get Started Now