Alkaline fuel cell (AFC)
The AFC generates electrical power using alkaline electrolyte KOH (potassium hydroxide) in water-based solution. The presence of hydroxyl ions within the electrolyte allows a circuit to extract electric energy. The illustration in Fig 2 reveals an alkaline fuel cell. As being revealed in Fig 2, two hydrogen gas molecules combines with 4 hydroxyl ions have a negative charge to release 4 electrons and 4 water molecules. The equation 4 reveals the reaction of oxidation that takes place. (Mark, 2003).
Equation (4)
(Oxidation) 2H2 + 4OH H2O + 4e?
Fig. 2. AFC (Alkaline fuel cell)
Source: (Andujar et al. 2009).
Typically, electrons are released in this reaction and reach the cathode and react with water to generate (OH?) ions. Moreover, 2 water molecule and oxygen combine with 4 electrons to form 4 negatively charged hydroxyl ions.
The equation 5 below reveals that reaction:
Equation (5)
(Reduction) O2 + 2H2O + 4e OH?
AFC generally performs better at a temperature between 60 and 90 "C. However, recent AFC design operates at temperature between 23 and 70 "C. Generally, AFC is a low cost catalyst, work at low temperature and the AFC electrical efficiency is approximately 60%, however its CHP efficiency is more than 80%, and has ability to generate electricity of up to 20kW.
NASA was the first organization that used AFC to generate electric power and supply drinking water during the space application. Based on the cost effectiveness of AFC, the AFC technology has now been used in boats, submarines, niche transportations, and forklift trucks applications. (Kordesch, 1999). Typically, AFC emits no green house gas and is very useful for space shuttle fleets and spacecrafts and operate with 70% efficiency. Despite the benefits derived from AFC, the technology could be easily poisoned with carbon dioxide. For example, when alkaline solution (KOH) in AFC electrolyte absorbs CO2, the chemical reaction will convert into potassium carbonate (K2CO3) which consequently poisons AFC. (Larminie & Dicks 2003). Typically, a small amount of CO2 could affect the cell operations. To make AFC more effective, there is a need to carry out the purification process. However, the purification process is very costly. AFC needs to be more cost effective to be effective used for commercial purpose.
Phosphoric acid fuel cell (PAFC)
PAFC uses H3PO4 (liquid phosphoric acid) electrolyte and carbon paper electrodes. The H3PO4 consist of:
3.09% H,
31.6% P,
65.3% O
Typically, H3PO4 is a clear colorless liquid used for food flavoring, detergents, fertilizers, and pharmaceuticals. The PAFC could operate at temperature ranging between 150 and 220 "C. The PAFC charge carrier is the hydrogen ion or proton.
"The hydrogen ions pass from the anode to the cathode through the electrolyte and the expelled electrons return to the cathode through the external circuit and generate the electrical current. At the cathode side, water is forming as the result of the reaction between electrons, protons and oxygen with presence of platinum catalyst to speed up the reactions." (Mekhilef et al. 2012 P. 983).
Illustration in Fig 3 reveals the hydrogen that expels at the anode splits into 4 electrons and 4 protons. At cathode, 4 electrons and 4 protons combine to form water as being revealed in equation 6 and equation 7.
Fig. 3. Operating Principle of Phosphoric Acid Fuel Cell
Equation (6)
(Oxidation) 2H2 ? 4H+ + 4e?
Equation (7)
(Reduction) O2 + 4H+ + 4e H2O
When protons and electrons pass through the electrolyte and the external circuit respectively, the reaction generates heat and electrical current. The heat could be used for heating water, or for steam generation. The PAFC is considered the first generation of fuel cell, and is one of the most mature fuel cells. Moreover, PAFC is the first fuel cell to be used commercially, and it is being used for stationary power generation. PAFC has also been used to power large vehicles.
However, steam reactions within the PAFC produce carbon monoxide (CO), which may poison the fuel cell and reduce the PAFC performance. However, solution to decline the CO absorption is to increase the tolerance of anode temperature. PAFC run on air and could be easily operate with reformed fossil fuels. Moreover, PAFC is very expensive, electrical efficiency of PAFC is between 40 and 50%, and its CHP efficiency is about 85%.
Solid Oxide Fuel Cell (SOFC)
Contrary to other fuel cell technologies, SOFCs high temperature fuel cells containing metallic oxide solid ceramic electrolyte....
2003). This was achieved with a channel only 750W and 400H, and power output remained consistent despite tests using 2M, 4M, and 8M methanol solutions as fuels (Lu et al. 2003). This shows that temperature has a much higher influence on performance than fuel solution or rate. A more recent and in many ways more innovative use of silicon materials, in combination with others, shows potential to further increase the
Fossil Fuels & Their Impact on the Environment Impact of Fossil Fuels on Environment Fossil fuels are formed by anaerobic decomposition of organisms over a period of millions of years. When burnt, they produce significant amounts of energy per unit weight and cannot be reused to supply energy. They are thus nonrenewable resources. The applications of fossil fuels range from use in motor vehicles, trains and industries to household consumption in stoves
Ford Motor Company Case Study of Ford Motor Company History, Development and Growth Ford Motor Company has been a vital American automaker since its incorporation in 1902. The car maker was started at that time by Henry Ford and has continued with some member of the family on the board of directors since that time. The company began selling individually manufactured vehicles, but moved to an innovation devised by the founder soon after.
Delphi Study: Influence of Environmental Sustainability Initiatives on Information Systems Table of Contents (first draft) Green IT Current Methods and Solutions Green IT and energy costs Green It and Email Systems Green IT and ICT Green IT and ESS Green IT and TPS Green IT and DSS Green IT and other support systems Green IT and GHG reduction Green IT and the Government Sector Green IT and the Corporate Sector Future Prospects of Green IT in the software industry The paper focuses on how the
I do that every day. But I've never done that with a car. I buy what I need to look successful. Besides, how would I ever calculate a payback when I have no idea what gasoline will cost in the future?" A few said with apparent certainty, "one year" or "two years." However, when we inquired where the number came from, they simply asserted that they spent lots of
This means that while there are tremendous amounts of promise. The preferred method of embryotic cells is still the most utilized approach. However, in the future this could change dramatically. The reason why is because scientists have been aggressively pursuing this method. This is based on the fact that there are no ethical issues when conducting this kind of research and there is a possibility of having a major
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now