Flight Deck Human-Machine Interface - "What to Expect in the Future"
This paper will analyze the issues associated with the flight deck human-machine interface. The data for this research will be collected through a number of secondary sources. Quantitative analysis of the collected data will be performed on the basis of frequency and types of accidents and the causes of accidents that occurred after the introduction of this technology. Qualitative analysis of the collected data will be performed on the basis of previous researches that were conducted on the issue under consideration. On the basis of the results obtained from this analysis, various recommendations will be proposed so that this technology can be further enhanced and the issues associated with it can be eliminated. The paper will also analyze aviation safety legislation and propose the changes that should be made in the legislation to make this technology safer and more efficient. Furthermore, the paper will also analyze the major aviation safety issues that the industry confronts, and propose ways in which these issues could be managed properly by authorities.
Flight Deck Human-Machine Interface - "What to Expect in the Future"
Statement of the Project
This project will provide an explanation of the issues and concerns associated with the flight deck human-machine interface. In addition, the paper will present a discussion concerning the positives of the interface, as well as the possible hazards to it, followed by a summary of the research and important findings concerning these issues. The project will analyze all potential issues and advantages, and will propose recommendations for further development of the flight deck human-machine interface. Even though flight deck automation has been well-received in an effective manner by the aviation industry, there has also been an increase in the identification of automation related human factor issues which are associated with the flight deck human-machine interface. (Funk, Niemczyk, Suroteguh & Owen, 1999). This is an individual project for the degree program of aviation, and will provide readers of it with strong information about what has been taking place in the field of human-machine interface on the flight deck, and what will be likely to take place in the future.
Introduction
In the present day, automation plays an important role in the aviation industry. The presence of automation and advanced technologies on airplanes contribute significantly to the improvement of skills and performance of pilots. In addition to that, these technologies also enhance the safety of flight operations, which can make a difference for everyone involved in working with or flying on the aircraft (Chialastri, 2012). It has also been indicated based on a number of issues that automation is often misused by the pilots. This fact can be established on the basis of a several variables, including human capabilities and limitations, along with poor ergonomics (Chialastri, 2012).
This paper aims at analyzing the benefits, issues, and concerns associated with the flight deck human-machine interface. It will also propose recommendations for the further enhancement of the manner in which this technology is deployed. The data for the purpose of this research will be gathered from secondary sources. The researcher, in order to get adequate results, will perform a qualitative as well as a quantitative analysis of the gathered information, resulting in a mixed-method study. The final results will then be communicated to the readers in a manner that will enable them to easily understand the meaning of this research and extract important information out of it. In that way, there can be more information provided that results in better human-machine interface options on the flight deck. The required data will be obtained from a number of peer reviewed journals, both online and printed, as well as books, including Flight deck automation and task management, and government publications, including Recommended Practices and Guidelines for Part 23 Cockpit/Flight Deck Design, Auto-flight Audit, and Human Factors Research Status Report and previously conducted researches
Program Outcomes to be addressed
Critical Thinking
"The student will apply knowledge at a synthesis level to define and solve problems within professional and personal environments" (ERAU, 2014).
Critical thinking is the key to success. For this project, that critical thinking involves effective demonstration of the collected information. It requires the researcher to analyze and present that data that is specific to the purpose of the research. Furthermore, it enables the researcher to contrast and compare critical variables and propose meaningful recommendations. By doing that, the researcher will be able to clearly show the focus of human-machine interface on the flight deck in the present day, and where it is headed in the future. There are many expected advances, and critical thinking is required to ensure that those advances...
Likewise, supervisors require free and timely access to global information concerning flight deck operations as well as sufficient opportunities to comprehend the meaning and importance of this information (Hancock & Flach, 1999). According to Hancock and Flach, though, improving sensitivity to local or global information requires specialized training and experience. In this regard, Hancock and Flach advise that, "The workup period on a carrier flight deck can be viewed as
Human Factors in Aviation Brief Historical Background The Airline Industry has a history that dates back to 1903 when the Wright brothers made their first successful flight in Kitty Hawk, North Carolina. Initially the public did not take the idea of the airplane travel favorably. But this event marked the beginning of the Airline Industry as more and more inputs were given by people such as Charles Lindbergh who successfully completed a
The mechanic must have adequate knowledge, training, data for assigned task, tools and equipment, be mentally and physically prepared, take safety precautions, have adequate resources, and have researched FAR, Federal Aviation Regulations, to ensure compliance. The task must be performed with a committed attitude, in accordance with appropriate data and acceptable methods, techniques, and practices that are industry acceptable. The mechanic must perform without pressures, stresses, and distractions, re-inspect
Cognitive laziness, according to the experts, is a condition in which people reveal a tendency to take short cuts for a number of things, including a short cut to flying on automation, as in this case. Social loafing refers to the tendency displayed by people, in which people tend to expend lesser effort in any given situation, when there is a group of individuals involved. ("Cockpit automation may bias
aviation is automation. Automation has been a part of aviation far longer than it has been a part of any other industry or cause, and aviation has been multi-cultural since the first flight across the Atlantic. In light of the recent global changes in aviation, after recent terrorist acts, there is a much greater international need for a culture of safety that alleviates the rational fears of the public.
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now