Fingerprint Classifications
Practical Applications of Fingerprint Classifications in Forensic Science
Fingerprint identification has numerous practical applications. Particular fingerprints may be matched to individuals because they are distinct and unchanging. The individuality of fingerprints is based on the ridge structure and minutiae. The recognition of these landmarks, including shape, number, and location is an automated process by which computer algorithms filter data and match a subset of individuals with a particular print. More complex analyses are then performed to identify the individual who matches the print from the subset of prospects. Overall, the accuracy of these technologies is extremely high and is considered the gold-standard for individual recognition. Future technologies such as DNA fingerprinting and iris scan algorithms appear promising and may replace fingerprinting in the future.
Practical Applications of Fingerprint Classifications in Forensic Science
Large volumes of fingerprints are collected and stored everyday for use in a wide range of applications including forensics, access control, and driver license registration. Automatic recognition of people based on fingerprints requires that the input fingerprint be matched with a large number of fingerprints in a database. For example, the Federal Bureau of Investigation database contains approximately 70 million fingerprints (Azoury et al., 2004). To reduce the search time and computational complexity, it is desirable to classify these fingerprints in an accurate and consistent manner so that the input fingerprint is required to be matched only with a subset of the fingerprints in the database.
According to most professional criminal investigators, fingerprints obey three fundamental principles. These principles are:
1. A fingerprint is an individual characteristic. It is yet to be found that prints taken from different individuals possess identical ridge characteristics.
2. A fingerprint will remain unchanged during an individual's lifetime.
3. Fingerprints have general characteristic ridge patterns that permit them to be systematically classified.
Fingerprinting analysis has been used for more than a century. However, this technology is still widely used in law enforcement agencies. Because of its unique characteristic, it is conclusive evidence and a valuable tool among advanced technology. However, there is a chance it might lose its ground by DNA fingerprint, which is more sophisticated and accurate than traditional fingerprint.
There are three types of fingerprints that may exist at crime scenes. First, visible prints are made from finger stained with colored materials such as ink, blood, and grease. In addition, plastic prints may be formed by pressing onto a soft surface such as clay, soap, and wax. Finally, a latent print is an invisible print left on an object by the body's natural greases and oils. Because it cannot be seen by the naked eye, fingerprint powders, chemicals, and even lasers are used to make fingerprints visible on the crime scene evidence.
In North America, one of the first successful uses of fingerprints for identification was by E. Henry in 1901 in order to stop the railway workers from double collecting pay (Schulz, Reichert, Wehner, & Mattern, 2004). The Henry system derives from the pattern of ridges, which are concentrically patterns on the hands, toes, feet, and fingers. It has reliably been proven that no two individuals have identical ridge patterns, ridge patterns are not inheritable, ridge patterns are formed in the embryo, ridge patterns never change in life, and after death may only change as a result of decomposition. In life, ridge patterns are only changed by accident, injury, burns, disease or other unnatural causes.
The individuality of any fingerprint may be based not upon the general shape or pattern that it forms, but instead upon its ridge structure and specific characteristics, also known as minutiae. The recognition of these ridges, their relative number, and the approximate location of them, on the observed print, are the special characteristics that make the fingerprint a specific identifying characteristic of each individual. There are at least 150 individual ridge characteristics on the average fingerprint. If between 10 and 16 specific points of reference for any two corresponding fingerprints identically compare, a match may be assumed. In a judicial proceeding, a point-by-point comparison must be graphically demonstrated for at least 12 different, but corresponding, points in order to prove the identity of a specific person (Maudling & Attwood, 2004).
Fingerprint classification is a technique to assign a fingerprint into one of the several pre-specified types already established in the literature, which can provide an indexing mechanism. Fingerprint classification may be viewed as a coarse level matching of the fingerprints. An input...
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now