Phosphorus and Eutrophicaation of Aquatic Systems
Phosphorus (P) is an essential element for all life forms. It is a mineral nutrient. Orthophosphate is the only form of P. that autotrophs are able to assimilate. Extracellular enzymes hydrolyze organic forms of P. To phosphate. Eutrophication is the overenrichment of receiving aquatic systems with mineral nutrients. The results are excessive production of autotrophs, especially algae and cyanobacteria. This high productivity leads to high bacterial populations and high respiration rates, leading to low oxygen concentrations or anoxia in poorly mixed bottom waters and at night in surface waters during calm, warm conditions. Low dissolved oxygen causes the loss of aquatic animals and release of many materials normally bound to bottom sediments including various forms of P. This release of P. reinforces the eutrophication.
Excessive concentrations of P. is the most common cause of eutrophication in freshwater lakes, reservoirs, streams, and headwaters of estuarine systems. In the ocean, N becomes the key mineral nutrient controlling primary production. Estuaries and continental shelf waters are a transition zone, where excessive P. And N. create problems. It is best to measure and regulate total P. inputs to whole aquatic ecosystems, but for an easy assay it is best to measure total P. concentrations, including paniculate P, in surface waters or N/P atomic ratios in phytoplankton.
Characteristics of Phosphorus
Phosphorus is a needed component of nucleic acids and many intermediary metabolites, such as sugar phosphates and adenosine phosphates, which are an important part of the metabolism of all life forms. With the exception of trace emissions of phosphines from volcanoes, the P. compounds found on the surface of the Earth are not volatile and transport through the atmosphere is primarily in dust or aerosols. Atmospheric flux rates are slow compared with those in surface waters. With few exceptions surface waters receive most of their P. In surface flows rather than in groundwater, since phosphates bind to most soils and sediments. The exceptions are where watersheds are of volcanic origin or where soils are water-logged and anoxic. Phosphorus only occurs in the pentavalent form in aquatic systems. Examples are orthophosphate, pyrophosphate, longer-chain polyphosphates, organic phosphate esters and phosphodiesters, and organic phosphonates. Phosphorus is delivered to aquatic systems as a mixture of dissolved and particulate inputs, each of which is a complex mixture of these different molecular forms of pentavalent
However P. is a very dynamic, biologically active element. After these P. inputs arrive in a receiving aquatic systems, the particulates may release phosphate and organic phosphates to solution in the water column and various P. compounds may be chemically or enzymatically hydrolyzed to orthophosphate, which is the only form of P. that can be assimilated by bacteria, algae, and plants. Particulates may be deposited in the bottom sediments, where microbial communities gradually use many of the organic constituents of the sediments, ultimately releasing much of their P. contents back to the water column as orthophosphate. Hence, one should not assume that particulate P. Or dissolved organic P. are inert in these aquatic systems because under appropriate conditions these forms of P. can be converted to dissolved orthophosphate.
Once delivered to a lake, reservoir, or estuary, P is usually kept fairly efficiently by a combination of biological assimilation and the deposition of sediments and biota to the bottom sediments. This efficient trapping of P. inputs makes these systems sensitive to pollution with excessive amounts of P. If the system is oligotrophic (low primary production), the bottom waters will have oxygen throughout the year and most of this P. will be stored in the bottom sediments.
However, in eutrophic systems (excessive primary production), Bottom waters often become anoxic during the growing season and even shallow waters may become diurnally anoxic at night during warm, windless weather. When these conditions occur, much of this P. In bottom sediments is released and diffuses back into the water...
Water Quality and Lake Winnipeg Watershed Management Eutrophication is the process by which nutrients in natural waters increase, causing an overgrowth of algae. Lake Winnipeg is one lake that has been adversely affected by eutrophication. Using Lake Winnipeg as a case study, this text demonstrates the causes of eutrophication, the effects of the same on aquatic life, and ways of minimizing its overall effects. What are the key differences in the physical,
Social Ecology of Health Promotion Module 05 Question 01: explain the rationale behind the federal government's approach to regulatory containments in food. The federal government's approach in relation to the regulation of the containments in food, aims at protecting the consumers on food insecurity through elimination of food pathogens. It is the role of the government to enhance the health system and conditions of its citizens through adoption and implementation of various
This study demonstrates that different total P. fraction releases may differ between two bodies of water under similar oxygen conditions (Kisand & Noges, 2003). This study is important in that it highlights the complexity of understanding P. fractions in any given body of water. There are a multitude of potential reactions in any body of water. Oxygen plays a role in the reactions of any individual lake, but one
While global warming is still hotly debated global pollution is already a fact. An environmentally sustainable development plan is the need of the hour. Bibliography 1) University of East Anglia (2009, November 17). 'Fossil fuel carbon dioxide emissions up by 29% since 2000.' ScienceDaily. Retrieved December 9, 2009, from http://www.sciencedaily.com/releases/2009/11/091117133504.htm 2) NGC, 'Acid Rain', retrieved Dec 9th 2009, from,, http://environment.nationalgeographic.com/environment/global-warming/acid-rain-overview.html 3) WHO, (2006), 'Indoor air pollution. 4000 deaths a day must no longer
The fact is that numerous rooted macrophyte structures are not full of naturally strong and healthy particles and sediments and nutrients. It is because of the restriction or absence of these particles, sediments and nutrients that the study of these systems has not been as extensive and thorough as the concentration on the terrestrial structures when understanding the fate, sources and sinks of Co2 levels in the ecosystems and the
In the absence of proper waste management laws and regulations, as well as poor enforcement of existing waste disposal laws, an increase in the number of manufacturing entities would inevitably increase instances of water pollution. According to Goel (2006), the mere fact that smaller cities report less instances of water pollution than larger cities is a clear indicator of the relationship that exists between population density and water pollution
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now