By regulation, the design of the nuclear reactor must include stipulations for human operator error and equipment failure. Nuclear Plants in the western world use a Defense in Depth idea which is a system with numerous safety components, each with back-up and design to accommodate human error. The components include:
"Control of Radioactivity - This requires being able to control the neutron flux. If the neutron flux is decreased the radioactivity is decreased. The most common way to reduce the neutron flux is include neutron-absorbing control rods. These control rods can be partially inserted into the reactor core to reduce the reactions. The control rods are very important because the reaction could run out of control if fission events are extremely frequent. In modern nuclear power plants, the insertion of all the control rods into the reactor core occurs in a few seconds, thus halting the nuclear reaction as rapidly as possible. In addition, most reactors are designed so that beyond optimal level, as the temperature increases the efficiency of reactions decreases, hence fewer neutrons are able to cause fission and the reactor slows down automatically.
Maintenance of Core Cooling - In any nuclear reactor some sort of cooling is necessary. Generally nuclear reactors use water as a coolant. However some reactors which cannot use water use sodium or sodium salts.
Maintenance of barriers that prevent the release of radiation - There is a series of physical barriers between the radioactive core and the environment. This means that if any radiation were to leak from the reactor it would be sucked into the vacuum building and therefore prevented from being released into the environment" (Safety of nuclear power reactors, 2011).
The design of the reactor also includes numerous back-up components, independent systems meaning two or more systems performing the same task in parallel, watching of instrumentation and the deterrence of a failure of one kind of equipment affecting any other.
Further, regulation necessitates that a core-meltdown occurrence must be restricted only to the plant itself without the need to empty nearby residence. Safety is also significant for the workers of nuclear power plants. Radiation doses are controlled via the following procedures:
The treatment of equipment via secluded in the core of the reactor
Physical shielding
Limit on the time a worker spends in areas with important radiation levels
Monitoring of individual doses and of the work environment (Safety of nuclear power reactors, 2011).
Inside a nuclear power plant, emergency diesel backup generators (EDBG's) are a very important part of plant safety systems. In standard operation, a nuclear plant produces the power needed to operate its coolant circulation system and other safety critical systems. In the occasion that power from the plant itself, or from the electricity grid, should not be accessible. EDBG's spring into action to make sure that coolant circulation is maintained and the reactor can be safely shut down. So vital are EDBG's that every nuclear reactor has at least two of them, ready to start at a moment's notice. As well as being present in replacement to make certain redundancy at all times, nuclear power plant EDBG's are subject to meticulous regulatory control to guarantee their availability and reliability. They must meet strict technical requirements, characteristically being able to reach their rated voltage and occurrence within ten seconds of startup (Maden, 2011).
After setting up, EDBG's must pass recurrent and rigorous tests as prescribed by the relevant national regulator to ensure their availability and reliability. The U.S. Nuclear Regulatory Commission, for instance, requires each EBDG to be started up and loaded at least once every thirty one days, with additional tests necessary at six-monthly intervals, plus further widespread tests at every refueling outage or at least once every two years. Every ten years, when the plant is in outage, the NRC requires all redundant EBDG units to be started at the same time in order to recognize any frequent failure modes that have gone undetected in tests of the single units (Maden, 2011).
Overall the safety of nuclear power is relatively good. Throughout its history there have been three main accidents that have involved unclear power. When comparing this to other energy producing industries this is low. Every year several thousand people die in coal mines to supply this widely used fuel for electricity. There are also important health and environmental effects arising from fossil fuel use. To date,...
Management Strategy to Utilize Meta-Analysis Technique for Nuclear Energy and Waste Disposal and Create Social Sustainability A Dissertation Presented using the Meta-Analysis Technique Komi E Fiagbe Comment by Owner: This is exactly what I wanted to see Komi. Your literature review should also identify the 20 studies that you want to analyze to give your readers an understanding of what you are doing. I want you to email me all three
Decreased Usage of Nuclear Energy: Qualitative-Content Analysis ADissertation Presentedusing the Qualitative Content-Analysis inPartial Fulfillment of the Requirements for the Degree of Doctor ofManagement in Environmental and Social Sustainability Komi Emmanuel Fiagbe Gbedegan Caroline WesterhofPH-D Chair Dr. Daphne DeporresPH-D Committee Member Dr. Steven Munkeby, PH-D Committee Member Date Approved Komi Emmanuel Fiagbe Gbedegan, 2016 A qualitative content analysis will be conducted to explore the phenomenon of decreased usage of nuclear energy at a time when global climate change indicates the
Decreased Usage of Nuclear Energy: A Qualitative Content Analysis A Dissertation Presented using the Qualitative Content-Analysis Komi Emmanuel Fiagbe Gbedegan Christina Anastasia PH-D, Chair [Committee Name], [Degree], Committee Member [Committee Name], [Degree], Committee Member Date Approved Komi Emmanuel Fiagbe Gbedegan, 2016 This research proposal explores the phenomenon of decreased usage of nuclear energy at a time when global climate change indicates the need for increased usage of nuclear energy. First, nuclear energy is declining in its share of
Management Research in Decreased Usage of Nuclear Energy: Content Analysis A Dissertation Presented using the Qualitative Content-Analysis Komi Emmanuel Fiagbe Gbedegan Caroline Westerhof PH-D, Chair Dr. Steven Munkeby PH-D, Committee Member Dr. Daphne Deporres PH-D Committee Member Date Approved Komi Emmanuel Fiagbe Gbedegan, 2016 A qualitative content analysis has been conducted to explore the phenomenon of decreased usage of nuclear energy at a time when global climate change indicates the need for increased usage of nuclear energy.
The 1980s (the period when Ronald Reagan was the U.S. President) witnessed a series of government measures targeting environmental regulations. This resulted in public outrage against the anti-environmental policies of the government leading to a renewed interest in nature clubs and groups and the formation of radical groups who led strong movements to protect the environment. (vii) the post- Reagan resurgence (1990s onwards) - President Bush and President Clinton
Studies of the aftereffects of the Gulf War determined that every single U.S. 120 mm tank shell resulted, on average, in approximately five pounds of radioactive Uranium Oxide dust. Likewise, each of the nearly one million 25 mm and 30 mm canon shells fired (mostly) by U.S. aircraft contributes a proportional share of Uranium Oxide dust per unit volume (Peterson, 2003). Unlike the depleted Uranium itself (which emits mainly Alpha particles), the
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now