Engineering Economy
Among the many theoretical frameworks that have developed in order to provide the best financial management practices, engineering economy "analysts and engineers with the tools to determine which course of action results in the lowest cost, greatest profit, or other aspects, often using comparative cost studies." Very often, engineering economy is used to evaluate projects relating to their costs and their future-value, so, in this sense, it can also be considered a decision-taking tool.
As one of the papers on the subject describes engineering economy, a proper definition of engineering economy should start from the two words forming the term. As such, economy is generally defined as "thrifty and efficient use of resources." In this sense, engineering economy answers the question "is it in the best interest of the enterprise to invest its limited resources in a proposed technical endeavor, or would the same investment produce a higher return elsewhere?." As such, engineering economy operates which such terms as time-value of money, inflation, depreciation, decision making among alternatives, evaluating replacement alternatives and optimization, terms which will be referred to later on in the paper. However, perhaps the best definition of the term refers to engineering economy as "the formulation, estimation, and evaluation of economic outcomes when alternatives to accomplish a defined purpose are available."
Following the last definition, we can now assume that engineering economy deals with making the best selection among a set of alternatives by evaluating the different outcomes that each of the alternative implies.
When we are faced with an engineering project, in general, there are two main things to consider. One of them is how much the project costs, the second one is how much benefit the project will bring. The problem with the project benefit is that, most often, these are future benefits, while the costs are in the present. How can we compare future benefits with present costs? The answer is rather simple: by calculating the future benefits in terms of present benefits. Hence, it is now the proper time to introduce the concept of the time value of money, perhaps the most important concept in engineering economy.
Time Value of Money
The time value of money is basically underlined by two general principles: future value and present value. The first concept is based on the idea that a dollar available in the present is more valuable than one that will be received some time in the future. The reason for this is simple: a dollar in the present can be invested and can produce an amount of money greater than a dollar. Hence, we have to be able to evaluate how much the present dollar will bring in the future, if it is invested at a certain given rate.
The calculation we use are fairly simple. Suppose PV is the present value and FV, the future value. K is the rate of annual interest.
Hence, FV = PV + k* PV = PV * (1+k)
That is to say the future value of the dollar is equal to the present value plus the gain from the investment, which is given by multiplying the present value with the rate of return on the investment, in this case, the interest rate.
If we continue this for several years, we will obtain the generalized formula for the future value of money, according to which FVn = PV (1+k) n
The present value of money is somewhat of a reverse concept. Assume we have the ability to invest some money in a project, possible investment that would bring us $130 after a five-year period. We need to calculate the present-value of this future revenue and compare it to the actual cost of the project. If the cost of the project is greater, then it is not economically efficient to act upon it. This process of finding the present value of a future cash flow is called discounting.
The formula we use in this case is obviously the reverse formula we have described above. Hence,
PV = FV/(1+k) n
As I have pointed out, the concepts of present and future values of money are the basics for engineering economy. Now we can move on to more applied concepts, involving project selection, among them, that of capital budget and capital budgeting.
One of the basic principles of economics is that the resources are limited, while the needs are not. Any company faces at a certain point the question: "which of these projects is it best for the company to be done?" This question comes in a context of limited constraints (a limited budget). Capital...
Engineering Curriculum Content Engineering curriculum Acquiring Engineering education is essential in training good quality engineer who afterwards becomes equipped to take up challenging task and responsibility as they undertake their duty. As one who is bestowed with responsibilities of administering an institution with limited resources and assigned to take part in revising the engineering curriculum that can accommodate more number of graduates, it is important to have necessary curriculum contents. As time passed
Engineering Ethics Ethics and Morality Related to the Field of Engineering The purpose of this paper is to define engineering ethics in brief, here the discussion will also be about why successful engineers should be able to inspire trust and confidence in others where their integrity and honesty is concerned. Some references will also be given regarding why college students have to be loyal before they step into the practical world. All
2009). This gives a strong idea of where the ethical onus lies in the practice of engineering. Another rather more expansive case study can be derived form the current state of bridges in the United States, and the general state of disrepair of many bridges that are still n regular heavy use (Harris et al. 2009). A rating system has been developed that determines when a bridge should be put
When you begin a career, you may not be sure what skills you are lacking, so working part-time, taking an internship, or even volunteering could help prepare the student for what the job entails, and make them more comfortable as they begin their career. As the career develops, the engineer may begin to see skills that are lacking, such as English writing, or team building, or many other aspects of
S. standards on foreign companies. Cascio, W.F. "Decency Means More than 'Always Low Prices': A Comparison of Costco to Wal-Mart's Sam's Club." Academy of Management Perspectives (August 2006). Accessed 18 June 2012 from: http://www.ou.edu/russell/UGcomp/Cascio.pdf This source is an article that appeared in the professional Journal, Academy of Management Perspectives. It provides a comparison of Wal-Mart and Costco from the perspective of their respective ethical approaches to various issues. Generally, the author contrasts the manner
Engineering Ethics This post-mortem report is directed to the British Petroleum (BP) board of directors concerning the BP Texas City refinery explosion incident that took place on March 23, 2005. A series of explosions occurred during the restarting of the hydrocarbon isomerization unit in the Texas City refinery. The main technical reason behind the initial explosion was the flooding of the over-pressurized distillation column, which ended up in a geyser of
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now