Unfortunately, this turned out to be the case during the final phases of construction. Despite this expensive security precaution, a catwalk collapsed on February 17, 1937, plunging 22 workers 220 feet into the bay below, killing ten of them (one man was saved when his leg became entangled in the safety net) (Stansen 5).
Project Duration
Construction began on January 5, 1933 and was completed on May 27, 1937 (Design and Construction 1).
Obstacles and Barriers
The first major obstacle encountered by the design engineers was the fact that the Golden Gate bay is more than one mile wide and more than 300 feet deep (Fireman and Kale 10). In this regard, the WGBH Educational Foundation emphasizes that, "The idea of a bridge linking the city with its neighboring counties was appealing, but the mile-wide gap between San Francisco and Marin presented huge challenges" (Golden Gate 3). Some of the more significant obstacles associated with this site included wind and water. For instance, historians emphasize that, "At the mouth of the Gate, the oncoming force of the Pacific Ocean creates turbulent waves and ripping currents. The location is plagued by gale-force winds and dense fogs" (Golden Gate 3).
In addition, the Golden Gate Bridge project represented an unprecedented attempt to construct a suspension bridge support using a tower situation in open ocean (Standen 3). This engineering barrier was overcome by an ambitious plan by Strauss to have workers initially construct a huge protection fender to prevent damage by from shipping (Underwater Construction 3). The fender, with 40-foot-thick concrete walls, enclosed about two-and-a-half acres of ground on the bay floor and was capable of being dried by pumping the water out, making a working space for bridge workers to build the concrete tower foundation inside (Underwater Construction 4).
With no Occupational Safety and Health Administration at work during this period in America's history, it is not surprising that the work in the fender was exceedingly treacherous. In this regard, the WGBH Educational Foundation emphasizes that, "Work inside the fender was the riskiest. At any moment, its walls could collapse from contact with a stray ship lost in the fog, or from the intense pressure exerted by the currents" (Underwater Construction 5). One diver that worked in the fender described his experiences thusly: "We were down damn near 50 feet, and every time you go down 29 feet you double your atmospheric pressure. Well, that's strong enough it can hold you smack against a wall, and you can't move" (Underwater Construction 5). Following the divers' completion of work on the fender, water was reintroduced into the fender to provide additional strength against the bay's strong current (Underwater Construction 4).
Working in the fender was grueling, but the conditions above the water were also arduous. According to Standen, "Divers faced powerful currents as they helped anchor the massive concrete bridge support onto the ocean floor. And up on the towers, workers stuffed newspapers in their jackets to keep warm" (3). Notwithstanding the ever-present dangers involved in working on the bridge itself above water, the conditions below water were truly extreme. The historians at the WGBH Educational Foundation reports that, "Divers were crucial to the plan. They guided beams, panels, blasting tubes and 40-ton steel forms into position and secured them, striving all the while to avoid being swept away in the current" (Underwater Construction 2).
Even today, these engineering barriers would be difficult to overcome, but the labor-intensive approaches used during the 1930s were effective but primitive -- and dangerous by comparison. In this regard, the WGBH Educational Foundation also notes that, "Workers shot timed black powder bombs deep into bedrock through the blasting tubes, often with such power that dozens of fish would be thrown out of the water and onto the south shore" (Underwater Construction 3). The bridge's project management team, though, persevered with the vital assistance of the underwater crews that dived up to 90 feet deep to clear debris from the black powder bombs and smooth the floor of the bay with underwater hoses that shot water out at
500 pounds of hydraulic pressure (Underwater Construction 4). Moreover, visibility at those depths in the bay was extremely limited and divers were required to work in virtually blind conditions in cumbersome diving suits amid heavy underwater currents (Underwater Construction 4).
Indeed, the bay's heavy currents introduced yet another project management barrier since it restricted the timeframes in which divers could work (Underwater Construction 5). Project managers addressed this barrier by allowing...
cheap genomic sequencing has widespread and unforeseen cultural, political, and societal implications that have only just begun to reverberate through the human population at large. Genomic sequencing not only reveals some of the causes and connections behind certain diseases or disorders, but also puts the lie to certain forms of bigotry which assumed that dramatic phenotypic differences represented a similarly dramatic genetic or biological difference (put another way, genome
In other words, at every seven courses of stone, a layer of reed matting was laid and weep-holes and drainage shafts were placed, thus preserving the ziggurat from water damage. Eventually the building fell into disrepair. Later, King Nabonidus restored the Ur ziggurat, along with other temples. Stiebing believes this was because he revered his mother's gods (285). Nabonidus claims in the clay cuneiform tablets found in the tower to
SCIENCE FICTION & FEMINISM Sci-Fi & Feminism Origins & Evolution of Science Fiction As with most things including literature, science fiction has progressed and changed a lot over the years. Many works of science fiction were simply rough copies and following the altready-established patterns of prior authors. However, there has always been authors and creators that push the envelope and forge new questions and storylines that have not been realized or conceptualized before.
EDSE 600: History and Philosophy of Education / / 3.0 credits The class entitled, History and Philosophy of Education, focused on the origin of education and the "philosophical influences of modern educational theory and practice. Study of: philosophical developments in the Renaissance, Reformation, and revolutionary periods; social, cultural and ideological forces which have shaped educational policies in the United States; current debates on meeting the wide range of educational and social-emotional
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now