Drosophila Lab Report
During the Mendel's rule in 1900, Drosophila melanogaster became a favorite model organism for genetics research. The life cycle of the fruit flies or Drosophila melanogaster, consists of the egg-larva-pupa-adult (male and female). The chromosomes are detailed structurally in comparison to the other normal chromosomes. The chromosomes also have the capacity to show during interphase when normal chromosomes are invisible. The main objective of this experiment is to oversee setup of reciprocal crosses with pure-breeding males and virgin females in relation to the application of Drosophila melanogaster.
Following the rediscovery of the Mendel's rule in 1900, Drosophila melanogaster became a favorite model organism for genetics research. The model (fruit fly) enhanced its popularity among the genetic researchers because of several reasons. One of the essential reasons for its popularity is because of the essence of small flies with increased rearing abilities within the context of the laboratories. This is essential for realization of the goals and objectives of the researchers in the execution of the experiments. The fruit flies also have a short life cycle. This is an indication that adult flies can be obtained every two weeks thus effective for the execution of genetic research exercises (Capy et al., 2006).
The life cycle of the fruit flies or Drosophila melanogaster, consists of the egg-larva-pupa-adult (male and female). Another essence of popularity for this model in the context of genetic research is that the fruit flies or Drosophila melanogaster are fecund. This is based on the capacity of the female to lay hundred of fertilized eggs in the course of the brief life span (Capy et al., 2006). The resulting population is essential for execution of easy and reliable statistical analysis during the execution of the experiment.
Another aspect of popularity is the concept of the giant chromosomes within the salivary glands of the mature larvae. The chromosomes are detailed structurally in comparison to the other normal chromosomes. The chromosomes also have the capacity to show during interphase when normal chromosomes are invisible. The embryo also grows outside the body thus facilitating effective study at each stage of development. There is also the possibility of targeting mutations in relation to specific genes. The genome is relatively small thus essential for execution of a reliable and credible statistical analysis (Capy et al., 2006).
Overview of the Experiment
The main objective of this experiment is to oversee setup of reciprocal crosses with pure-breeding males and virgin females in relation to the application of Drosophila melanogaster. The project focuses on the application of a pair of reciprocal crosses in the form of monohybrid and di-hybrid crosses. The experiment seeks to adopt wild-type flies and flies with white eyes, yellow bodies, or abnormal antennae to facilitate the goals and objectives of the concept of monohybrid crosses. In this cross, the focus will include mutant females and wild-type males while the other will be the opposite of the initial cross. The focus of this group is on the antennapenia cross of wild type (male antennapedia x female wt & male wt female antennapedia).
Materials & Methods
In the execution of this research, the fruit flies were essential to facilitate the goals and objectives of the process. The execution of the research focused on an outlined procedure in order to achieve the desired outcome. The first aspect was the need to prepare fresh bottles for the crosses during the experiment. This required acquisition of two clean milk bottles for the purposes of each cross. Each bottle was to contain approximately 30 ml of instant Drosophila medium flakes (Carolina Biologicals). It was also essential to measure 30 ml of ddH2O. The next step was to swirl the water and media gently to avoid stickup of the components on the sides of the bottle. Following gentle swirling of the medium, few grains were placed on top of the mixture.
An opportunity of approximately five minutes was essential for the medium to setup. The bottles were...
Genetics and Development Genetics is a scientific discipline that deals with how individuals inherit their physical and behavioral attributes. Generally, genetics is a branch of biology that deals with the science of heredity, genes, and differences in living organisms. It's the process with which a child inherits traits from his/her parents and the molecular organization and function of genes. The question of what determines the development of a child has been
Genetics and Development: As a discipline of biology, genetics is basically considered as the science of genes, inheritance, and differences in living organisms. Since genes are common characteristics in living organisms, genetics is used in the study of all living systems including plants, humans, domestic animals, bacteria, and viruses. Generally, this biological discipline focuses on the molecular structure and operation of genes whose behaviors are in the context of organisms or
Hence, genetic factors underlie the stability or continuity of psychological traits. Gene Development Mutations play a vital role in genetics, although they cause different disorders living things. Sometimes heredity causes disorders that affect the normal genetic development. Genetic processes control how humans develop from a single cell to adult human beings. Genes control the nervous system cells, and re-growth of skin and hair cells. Genes make humans dynamic organisms capable of
The information is then transcribed into the traits and phenotypes of the offspring depending on the dominance and recessive alleles within the gene (Berg, Tymoczko, & Stryer, n.d). The egg is fertilized by the sperm from the mother and their nuclei fuses together to form a zygote. The zygote contains 23 chromosomes from the mother and 23 from the father. From this combination of genes and the environmental conditions
Genetics Student Response Original DNA Strand: 3'-T ACCCTTTAGCCACT-5' Transcription (base sequence of RNA): 3'-A UGGGAAAUCGGUGA-5' Translation (amino acid sequence): Met -- Gly -- Asn -- His -- Arg -- STOP Mutated gene sequence one: 3'-T ACGCTTTAGCCATT-5' Transcription (base sequence of RNA): 3'-A UGCGAAAUCGGUAA-5' Translation (amino acid sequence): Met -- Arg -- Asn -- His -- Arg -- STOP Mutated gene sequence two: 3'-T AACCTTTACTAGGCACT-5' Transcription (base sequence of RNA): 3'-A UUGGAAAUGAUCCGUGA-5' Translation (amino acid sequence): Ile -- Gly -- Asn -- Asp -- Pro-STOP What is the significance of the
Genetics Original Gene Sequence: 3'-T AC CC T. TT AGTAGCCAC T-5 Transcription of Original: 3'-A UG GG A AA UCAUCGGUG A-5' Translation of Original: Start codon Met, Gly, Asn, His, Arg, Stop Mutated Gene Sequence 1: 3'-T ACGCT TT AGTAGCCAT T-5' Transcription of Mutated 1: 3'-A UGCGA AA UCAUCGGUA A-5' Translation of Mutated 1: Start codon Met, Arg, Asn, His, Arg, Stop Mutated Gene Sequence 2: 3'-T AACCT TT ACTAGGCAC T-5' Transcription of Mutated 2: 3'-AUUGGAAAUGAUCCGUGA Translation of Mutated
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now