Desiccation Tolerance in Prokaryotes
Water is very important for life. Indeed, the processes of life, both external and internal even, at the cellular and the molecular level, are governed by water. Without water, most living organisms suffer from what is known as water stress.
This water stress can be due to the loss of water or dehydration. Desiccation is a special case of dehydration where drying takes place in air. Alternatively, another form of water stress is due to the excessive accumulation of salts. This is relatedly called osmotic stress. Osmosis seeks to reduce this accumulation by moving fluids across a concentration gradient. While most living beings cannot survive without water, lesser species belonging to the eukarya group -- that includes both bacteria and a more primitive organism archaea show remarkable tolerance to water stress.
Responses to water stress takes place at a supracellular level as well as a cellular level. This work will be concerned with the latter. Thirst response or the secretion of anti-diuretic hormones in animals indicates that there is water stress. This stress is remedied by either increasing the intake of water or reducing the loss of water. Plants also have a supracellular response. Closing of stomata on leaves indicate the need for decrease in transpiration rates. Another defense mechanism has origins in evolution. Cactus leaves have evolved into thorns to preserve water-loss. The green fleshy stems store water and conduct photosynthesis. This work will be dedicated to exploring the current research being done in explicating the idea of desiccation tolerance in prokaryotes -- namely bacteria and archaea (though not a lot of research is being done in the latter, these organisms having been only recently identified).
Desiccation tolerance is also called anhydrobiosis -- or a form of suspended animation. The concept was identified a few centuries ago. (Schierbeek, 1959). This suspended animation lasts until water is available to resume proper metabolic function. At its basic, mechanistic level, this process engenders the use of sugars (sucrose, etc.) to replace the hydrogen bonds that sustain the viability of protein and other molecules in cellular metabolism. Or, as will be shown in this work, other methods are employed to preserve the structure function of proteins and the integrity of DNA.
Bacteria are critical to most molecular biology research. If a DNA sample is to be studied or created in large quantities for expression purposes for (for instance) protein synthesis, researchers make use of Escherichia coli. The DNA is inserted into the E. coli chromosomal plasmid. The bacteria are then spotted on a plate that contains nutrients and moisture that allows the bacteria to grow and reproduce. Each spot is then allowed to multiply (almost exponentially) in a medium rich for bacterial growth. This medium is aqueous. It is kept at a temperature of 37 "C -- the ideal temperature for bacterial growth. E. coli then multiplies by the typical bacterial reproductive process of geometric cell division, thus creating large quantities of the DNA to be studied. The point for using, what is called as recombinant DNA techniques, is not only to illustrate that bacteria drive research, but that bacteria thrive under moist conditions at the right (and mild) temperature. The operative terms being -- moist and mild. As such, E. coli, despite its abundance is not a good candidate for desiccation tolerance and research has shown that this is indeed true.
On the other hand however, bacteria such as the cyanobacterium Nostoc commune and Deinococcus radiodurans thrive under extremely dry conditions of very high or very low temperature where water as a metabolite is not easily available. In fact, both these bacteria, especially D. radiodurans can withstand radioactivity that would easily kill all other living things. This correlation between tolerance to radioactivity and desiccation is important. Researchers believe that the mechanisms of both are intrinsically linked. That since radioactivity is not a natural phenomenon on earth, the tolerance to radioactivity is a manifestation of the tolerance to conditions of extreme dryness. In turn, therefore, to understand one form of tolerance, mechanistically, is to understand the other.
Prokaryotes have developed a mechanism for survival under extreme and harsh conditions that has earned them the moniker of extremophiles. These include theromophiles (able to exist at high temperatures) and acidophiles (able to survive under conditions of low pH) and halophiles (in conditions of high salinity). Thermophiles were first discovered in the depths of Yellowstone National Park's hot springs, where the temperature of the water exceeds that of its boiling point. Halophilic archaea have been discovered in salt crystals from millions of years ago. (Rothschild & Mancinelli,...
Desiccation Tolerance in Prokaryotes Prokaryotes or eukaryote is the organism that makes up the microbial world. Prokaryotes are deficient of internal unit membranes and are self-sufficient cells or organisms. The best-known prokaryotic organisms are the bacteria. The cell membrane in prokaryotes makes up the cell's primary osmotic barrier and consists of a phsopholipids unit membrane. The ribosome carries out translation and protein synthesis and is present in the cytoplasm. Normally, the
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now