Desiccation Tolerance in ProkaryotesProkaryotes or eukaryote is the organism that makes up the microbial world. Prokaryotes are deficient of internal unit membranes and are self-sufficient cells or organisms. The best-known prokaryotic organisms are the bacteria. The cell membrane in prokaryotes makes up the cell's primary osmotic barrier and consists of a phsopholipids unit membrane. The ribosome carries out translation and protein synthesis and is present in the cytoplasm. Normally, the nuclear regions consist of circular, double-stranded deoxyribonucleic acid.
Plasmids, the accessory self-replicating genetic structure is present in many prokaryotes with extra not necessary cell functions like encoding proteins to inactivate antibiotics. On the other hand, the eukaryotic cells have a nuclear membrane, well-defined chromosomes, mitochondria, a sector device, an endoplasmic reticulum and digestive system with many cell types. The prokaryotes are deficient of structural multiplicity and consist of millions of genetically distinct unicellular organism, which is well-known among eukaryotes and they make up for in their physiological diversity. A particular group of prokaryotes is often distinguished and combined by a particular physiological characteristic. [Major groups of prokaryotes]
The groups of prokaryotes are formed on the basis of easily observed traits like morphology, gram stain, motility, and structural features and on distinguishing physiological features, in Bergey's Manual. But the right method to classify prokaryotes is on a genetic basis i.e., by comparison of the nucleotide sequences of the small subunit ribosomal RNA that is contained in all cellular organisms. Groups of prokaryotes can be positioned under unimportant headings, based on common structural, biochemical or ecological properties. Some prokaryotes are in more than one group and some groups consist of both Archaea and Bacteria. Based on the RNA analysis, the Archaea consists of three phylogenetically distinct groups: Crenarchaeota, Euryarchaeota and Korarchaeota. Archaea can be arranged into three types, based on their physiology: Methanogens-prokaryotes producing methane, extreme halophiles-prokaryotes that exist at very high concentrations of salt and severe thermophiles-prokaryotes that exist at very high temperatures. [Major groups of prokaryotes]
The prokaryotes display unique structural or biochemical attributes, which adjusts them to their particular habitats, in addition to the unifying archael features that differentiate them from bacteria. It has been confirmed by the phylogenetic analysis of the Bacteria that eleven distinct groups exist but most of them consist of members that are phenotypically and physiologically irrelevant. The major group of Bacteria are Photosynthetic purple and green bacteria, Purple and green sulfur bacteria, Spriochetes, Cyanobacteria, Myxobacteria, Lithotrophs, Pseudomonads, Enterics Vibrios, Nitrogen fixing organisms, Pyogenci cocci, Lactic acid bacteria, Endospore forming bacteria, Actinomycetes and related bacteria, Rickettsias and Chlamydiae, Mycoplasms, Plant pathogenic bacteria etc. [Major groups of prokaryotes]
The conventional categorization of prokaryotic envelopes as either gram positive or gram negative is used in the modern reviews about bacterial cell wall properties. When tainted with crystal violet, both envelope types show a characteristic difference mainly based on the difference of their peptidoglycan architecture. Normally the multi-layered peptidoglycan of gram-positive bacteria forms a physical barricade for the dye. But in gram-negative bacteria the tint can be easily washed out because of their comparatively thin sacculus. The peptidoglycan architecture largely decides the different properties of the two cell wall types in terms of mechanical stability, permeability and resistance toward chemical substances along with other traits like the occurrence of accessory cell wall polymers or the presence of an outer membrane. [Major groups of prokaryotes]
The cell bound water is evaporated through air-drying and subsequent addition of water to air-dried cells is the process through which the prokaryotes have been formed. This procedure of air-drying is called desiccation. Some bacterial cells which have been subjected to air-drying, the removal of free cytoplasm water can be fast. In such cases the preferred balance between cell-bound water and the environmental water potential is got immediately. This state of the endurance of the organism in response to such air-dried state is known as desiccation tolerance. For most of the cells, even a shortfall of a small fraction or intracellular water is deadly. Some cells subsists extreme desiccation for a long time. While some can withstand desiccation for thousands and millions of years, there are some bacteria, which stay alive only for a few seconds in such a dried state. [Desiccation tolerance of prokaryotes.]
The term used to specify the amazing capability of certain organism to withstand almost total dehydration is Anhydrobiosis. It is...
Desiccation Tolerance in Prokaryotes Water is very important for life. Indeed, the processes of life, both external and internal even, at the cellular and the molecular level, are governed by water. Without water, most living organisms suffer from what is known as water stress. This water stress can be due to the loss of water or dehydration. Desiccation is a special case of dehydration where drying takes place in air. Alternatively, another
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now