Data Warehousing and Data Mining
Executive Overview
Analytics, Business Intelligence (BI) and the exponential increase of insight and decision making accuracy and quality in many enterprises today can be directly attributed to the successful implementation of Enterprise Data Warehouse (EDW) and data mining systems. The examples of how Continental Airlines (Watson, Wixom, Hoffer, 2006) and Toyota (Dyer, Nobeoka, 2000) continue to use advanced EDW and data mining systems and processes to streamline their business models are a case in point. The greater the level of economic uncertainty, perceived and actual risk in any given strategy or endeavor, the more the reliance on EDW, data mining and advanced forms of predictive modeling including analytics (Sen, Ramamurthy, Sinha, 2012). From this standpoint, the emerging areas of high growth in the global economy are attracting a high level of investment in EDW, data mining, predictive modeling and analytics. The latest figures illustrate how valued EDW and data mining are in enterprise today. According to industry research and advisory firm Gartner, the EDW and data mining market began 2011 with a global value of $23.2 billion with a projection of market growth of 7% per year through 2015, making it one of the largest and perennially growing enterprise software market (Sen, Ramamurthy, Sinha, 2012). Gartner has defined the EDW and data mining architecture as being comprised of the architectural design, repository and execution platform. These three core components are how this research and advisory firm analyze the market from a software component standpoint, looking at the relative adoption of each EDW and data mining component (Sen, Ramamurthy, Sinha, 2012). The intent of this analysis is to evaluate the benefits and current trends in EDW and data mining, evaluating Continentals' and Toyota's best practices and results achieved. Additional objectives include an assessment of EDW and data mining optimization techniques, recommendations for storage solutions and an analysis of a potential EDW process workflow predicated on a Customer Relationship Management (CRM) system.
Benefits and Current Trends in Data Warehousing and Data Mining
The greatest benefit that is being accrued from EDW and data mining is the ability to gain greater insights into the customer, distribution channel, supplier and stakeholder processes, systems and metrics over time. A highly effective EDW and data mining strategy will bring together a myriad of systems that had been disconnected, even siloed, throughout an enterprise. The Master Data Management (MDM) applications that are part of an EDW architecture or platform deliver what many enterprise lack previous to this point, which is a single system of record for all transactions and enterprise-wide activity (Fay, Zahay, 2003). Having a single system of record leads to more synchronized, unified strategies across an entire enterprise and often leads to corporate cultures becoming more galvanized around specific goals, objectives, while also measuring their relative performance with much greater accuracy and insight (Watson, Wixom, Hoffer, 2006). Based on the solid foundations of an MDM architecture and the ability to mine data across the enterprise, enterprises often accelerate their use of many different forms of analytics, from predictive modeling to data visualization including modeling customer interactions to see how pricing and product promotions will impact sales and profitability (Fay, Zahay, 2003). This leads to one of the most critically important advantages of using EDW and data mining applications, which is the ability to predict overall corporate performance based on the impact of demand-driven, customer-driven and supply chain-based factors and determinants of performance (Watson, Wixom, Hoffer, 2006).
Relying on this integration of customer, distributor and supplier EDW and data mining applications once integrated to financial systems have been delivering insights that continue to revolutionize the financial management of firms (ABA Journal, 1999). The trend begun over fifteen years of integrating customer, distribution and supply chain data into a single system of record to drive greater insights into an enterprise and therefore attain a greater clarity of decision making is a pervasive best practice across many enterprises today (Brachman, Khabaza, Kloesgen, Piatetsky-Shapiro, Simoudis, 1996). The trend has accelerated in the last three years to include Big Data and the use of Hadoop and MapReduce to better analyze and interpret large-scale data sets that are outside the range of calculating and analysis levels of existing mainstream EDW systems and platforms (Sen, Ramamurthy, Sinha, 2012). The advent of Big Data is already beginning to reshape how decisions are made in enterprises, even though this specific technology, considered part of the highest-growing areas of EDW and data mining, is nascent and in the first phase of its industry...
Data Mining in Health Care Data mining has been used both intensively and extensively in many organizations.in the healthcare industry data mining is increasingly becoming popular if not essential. Data mining applications are beneficial to all parties that are involved in the healthcare industry including care providers, HealthCare organizations, patients, insurers and researchers (Kirby, Flick,.&Kerstingt, 2010). Benefits of using data mining in health care Care providers can make use of data analysis in
Data Mining The amount of knowledge available in today's world is massive. The information technology specialist who's responsible to his or her organization for maximizing the capacity for practical usage of this knowledge, it is becoming increasingly difficult to have a total grasp of the problem. The purpose of this essay is to discuss the importance of implementing data warehousing and mining systems inside an organization. In order to do this,
The use of databases as the system of record is a common step across all data mining definitions and is critically important in creating a standardized set of query commands and data models for use. To the extent a system of record in a data mining application is stable and scalable is the extent to which a data mining application will be able to deliver the critical relationship data,
Similarly, the Air Force needed no only some intelligent reporting capabilities, but a way that Air Force personnel, government employees, and civilian IT contractors would work together in the evaluation of applications and reports in a more robust and real-time manner. "The intent was to provide the Keystone user community the ability to do more complex financial analysis and reporting on a "self-service" basis to reduce overall system maintenance and
Computer Science The overall theme or focus: The media industry is an industry that is resistant to the validity of data mining and the kind of insight data mining in this field could yield. There are two primary pieces of software with respect to film and television editing. They are Avid and Final Cut Pro, while there are more programs available. The latest version of Final Cut Pro, FCPX, takes more a
Data Warehousing: A Strategic Weapon of an Organization. Within Chapter One, an introduction to the study will be provided. Initially, the overall aims of the research proposal will be discussed. This will be followed by a presentation of the overall objectives of the study will be delineated. After this, the significance of the research will be discussed, including a justification and rationale for the investigation. The aims of the study are to
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now