Data Warehousing: A Strategic Weapon of an Organization.
Within Chapter One, an introduction to the study will be provided. Initially, the overall aims of the research proposal will be discussed. This will be followed by a presentation of the overall objectives of the study will be delineated. After this, the significance of the research will be discussed, including a justification and rationale for the investigation.
The aims of the study are to further establish the degree to which data warehousing has been used by organizations in achieving greater competitive advantage within the industries and markets in which they operate. In a recent report in the Harvard Business Review (2003), it was suggested that companies faced with the harsh realities of the current economy want to have a better sense of how they are performing. With growing volumes of data available and increased efforts to transform that data into meaningful knowledge that can be used to aid in gaining competitive advantage, companies are increasingly recognizing how knowledge can be used as business intelligence to reduce risk and to accomplish business outcomes (Harvard Business Review, 2003). More importantly, companies are wanting to make certain that enterprise data is integrated to the point that it can be used to guide the business in making critical decisions at the right time and right place in relation to customers.
As noted by Foote and Krishnamurthi, (2001), until very recently, the forecasting process used by companies was relatively subjective and was dependent upon the opinions of company executives, sales force analysts, and industry analysts, who were not always extremely reliant in aiding the company to in the production of satisfactory outcomes. Quite frequently, as reported by Foote and Krishnamurthi, companies found that they had missed the mark in forecasting and consequently had failed in achieving profitability, reliability and a competitive vantage position in their industry. Thus, companies are increasingly recognizing the value of investing in an information system to support their forecasting process. According to Foote and Krishnamurthi, a data warehouse has come to be identified as assuming a pivotal role in gaining the knowledge needed by companies to implement reliable systems for forecasting. It enables companies to collect data from many sources, perform analyses, and make informed decisions in real time for the purposes of achieving competitive advantages and accuracy in its forecasting operations in an unprecedented manner.
As data warehousing has been identified as offering extensive promise to companies in improving and gaining greater accuracy in forecasting, it is the intent of the study to further examine the documented experiences of companies who have implemented data warehousing in order to gain a better understanding as to whether improved forecasting has been obtained within these companies. As well, it is the aim of the study to further determine whether companies have been able to achieve greater competitive advantage.
Objectives of the Study
The overall objective of the study is to further explore the degree to which data warehousing has been effective in assisting companies with the process and activities of forecasting as well as in gaining competitive advantage
Significance of and Justification for the Study
As evidenced within the current literature, some companies have reported success with data warehousing while others have not. While Foote and Krishnamurthi (2001) developed a model for understanding the stages of a data warehouse for the purposes understanding and predicting how companies data warehouses change over time, it would appear that this model may also offer utility in determining why some companies are more successful and gain greater competitive advantage than other companies. The proposed study offers the opportunity to examine the success or lack of success of data warehouses through the systematic examination of a number of different variables (i.e., those identified in objective 4 above). As well, Foote and Krishnamurthi's stages model of data warehousing has not of yet been tested in this manner and the results of the study may offer further opportunity to further validate the model while demonstrating its potential utility in examining the degree of competitive advantage achieved by companies on the basis of the stages model.
CHAPTER TWO
LITERATURE REVIEW
Data Warehousing: Background
During the 1990s, data warehousing emerged as one of the most important developments in the information systems field. Prior research has suggested that 95% of the Fortune 1000 companies either have a data warehouse in place or are planning to develop one (META Group, 1996). Predictions had suggested that the data warehousing market would grow to a $113.5 billion market by the year 2002, including the sales of systems, software, services, and in-house expenditures (Eckerson, 1998). Such predictions have not been surprising as research findings had suggested that company executives had identified data...
Growth Aided by Data Warehousing Adaptability of data warehousing to changes Using existing data effectively can lead to growth Uses of data warehouses for Public Service Getting investment through data warehouse Using Data Warehouse for Business Information Ongoing changes in Data Warehousing The Origin of Data Warehousing and its current importance Relationship between new operating system and data warehousing Developing Organizations through Data Warehousing Telephone and Data Warehousing Choose your own partner Data Warehousing for Societal Causes Updating inaccessible data Data warehousing for investors Usefulness
Introduction Big data has become one of the most important aspects of supply chain management. The concept of big data refers to the massive data sets that are generated when millions of individual activities are tracked. These data sets are processed to yield insights that help inform managerial decision-making. Supply chains in particular have leveraged big data because companies have been able to develop technology to not only capture hundreds of
In addition to the integration of the many disparate, often previously isolated systems, companies who rely on knowledge management as critical to their core business model also create a specific layer dedicated to just analytics (Dolezalek, 2003). These frameworks increasingly rely on data mining and search algorithms that can traverse databases and systems from a wide variety of Accenture practice and development teams, even those that are legacy-based and
The greater the functionality of the tag the higher the frequency required to communicate the contents of it, hence the spectrum of frequencies shown in Figure 3, Comparison of RFID Frequencies. Figure 3: Comparison of RFID Frequencies Sources: (Cheung, Chu, Du, 2009) (Wang, Wang, 2009) The greater the frequency of a given set of tags the greater the flexibility and the more data they are often capable of storing, capturing as they
Business Intelligence Unlike its Military counterpart, Business Intelligence is not an oxymoron. There are many examples of successful implementations of Business Intelligence despite the challenges. This paper explores the purposes for and the complexities of data processing systems that are designed to provide tools for top managers in their task of wading through swamps of unrelated information as they hone in on supports for taking critical business decisions. A possible confusion of
For that reason, logistics expertise unquestionably is a vital approach to lower the expense. Green logistics is not just substantial to decrease the basic logistics expense, however likewise more vital to environment, energy-saving and high effectiveness. Enterprises need to quicken the development of green logistics, so as to acquire brand-new competitors' benefits and additionally they need to take care of future difficulties (Guochuan Yang, 2010). Establishing green logistics can enhance
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now