Computed tomography, more commonly know as a CT or CT scan, is an X-ray technique that is used to produce very detailed images of internal organs located in various parts of the body, such as the head, chest, and abdomen. Doctors use the images produced through this procedure to help diagnose and treat diseases. Other terms for the technique are also called computerized tomography or computerized axial tomography (CAT). While conventional X-ray exams produce two-dimensional images, CT scans uses an X-ray-sensing unit that rotates around your body and a large computer to create cross-sectional images of the inside of your body. This paper will address vital educational information including a brief history, uses for computed tomography, and the effects that it may have on the patient.
Computed Tomography
Brief History
British engineer, Godfrey Hounsfield of EMI Laboratories, England and Allan Cormack of Tufts University in Massachusetts invented computed tomography. Their work led to the installation of the first clinical CT scanners between the years 1974-1976. The original systems were limited to only taking images of the head, but soon "whole body" systems with larger patient openings became offered. The use of Cat Scans was in wide use beginning in 1980. There are now about 6,000 CT scanners installed in the United States and about 30,000 installed worldwide.
The first CT scanner developed by Hounsfield in his lab took several hours to acquire the raw data for a single scan or "slice" and took days to reconstruct a single image from this raw data. This is a far cry from the efficient imaging of the latest multi-slice CT systems that now have the capability to collect up to four "slices of data" in about 350 milliseconds and then reconstruct a matrix image from millions of data points in less than a second. For example, an entire chest image can be scanned in five to ten seconds using the most advanced multi-slice CT system.
During its brief history, advancements for computerized tomography have made great improvements in speed, patient comfort, and resolution. As scan times have gotten faster, more anatomy can be scanned more quickly and more efficiently. The extreme speed of scanning allows the elimination of artifacts from patient motion such as normal breathing. Faster scanning helps to eliminate artifacts from patient motion such as breathing or peristalsis. CT exams are even now quicker and more patient friendly than ever before. Tremendous research and development has been made to provide exceptional image quality for a diagnostic guarantee of the lowest possible x-ray dose.
Benefits for Computed Tomography
Computed tomography has been a powerful tool for more than thirty years and the benefits of a CaT scan include many. It is also a noninvasive way to "see" one's internal organs and tissues. "Advances with helical and subsequent multidetector technology have offered expanding and diverse opportunities" (Frush, 2003) where doctors use CaT scans to diagnose many conditions, such as tumors, infections, blood clots, and broken bones. (MayoClinic.com, 2003). A CaT scan also helps in diagnosing some diseases that might otherwise require surgery. For example, doctors can use a CaT scan to guide catheters to an abscess in the body and then drain pus from the infected area.
Computed tomograpy is used for various reasons and include:
Diagnose muscle and bone disorders, such as osteoporosis
Bone disorders are easier to detect than with traditional x-ray technology. Many hairline fractures may now be detected that previously were overlooked, thus possibly causing loss of bone area since it remained untreated.
Pinpoint the location of a tumor, infection or blood clot
Guide procedures such as surgery, biopsy and radiation therapy
Detect and monitor diseases such as cancer or heart disease, and monitor the progression of a disease
Detect internal injuries and internal bleeding
Revolutionized the surgical approaches to the posterior-ethmoid sinuses since the introduction of computed tomography
There are many revolutionary advances in the field of sinus surgical procedures. When the introduction of computer-aided image guidance in 1993, the endoscopic view and the CT view have been united to provide a three-dimensional triplanar perspective to the surgical anatomy, thus allowing computer-aided imaging to become an invaluable aspect of crucial anatomic regions such as the sphenoid sinus (Wagner & Conti, 1991).
They state, "that the sphenoid sinus, located in the recessed position in the skull base and surrounded by a host of vital neurologic structures, may be amenable to image-guided surgery in both primary and revision...
The recent two reported cases also suggest that there may be many more similar incidences happening around unnoticed. The two contrasting examples of overdoses of radiation at hospitals confirms that if the hospitals accept their responsibilities properly and try to serve the patient's in professional manner, such types of accidental over exposure can be avoided. Instead of creating a medical terror, the reporter managed to provide relevant information in a
Computed Tomography (CT)Basic Fundamentals of ModalityComputer modality is the interaction between computers and humans, which can be unimodal or multi-modal (Karray et al., 2008). The fundamentals involve the usability of this interaction along with functionality. Functionality determines whether the purpose for which the interaction between humans and computer takes place is fulfilled or not. Usability is whether the adequate accomplishment of goals for which the interaction is created is effective
However, the increased use of CT scans in more of less careless and ill-advised practices will raise the concern of the effects it has on the health of the general public. It is therefore critical that the public is made aware of the associated risks and necessary education is conducted. The voice of all radiologists, clinicians, and technicians should advocate for the safe use of CT scans for both
Conventional Tomography outlining the various aspects, issues and methods used. It has 10 sources. The field of medical imaging has been in existence for over one hundred years but new research and scientific breakthroughs have changed both its image and its role. Radiology is not only diagnostic but is expanding to encompass curative techniques as well. The most common radiological investigation remains the conventional X-ray but a wide range of
Positron Emission Tomography (PET) PET represents a new step forward in the way scientists and doctors look at the brain and how it functions. An X-ray or a CT scan shows only structural details within the brain. The PET scanner gives us a picture of the brain at work. - What is PET? The epigraph above is reflective of the enthusiasm being generated among clinicians concerning the advent of positron emission tomography
Kai Hung Fung Artwork Instrument of Expression and Communication Kai Hung Fung and his Artwork Kai Hung Fung is a radiologist known for his 3D creative work on human body. He gained attention in 2003 when he started using computed tomography (CT) to visualize human body parts. His creative work is based on a complete background research for example he researched about color usage in 3D image of computed tomography. He is also
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now