Incoming photons were either reflected off of the initial detector surface or they passed directly through the device without being absorbed by the nanowire filament. Optical transmission losses such as these represented a major stumbling block for researchers intent on improving the efficiency of these systems, which had only been able to reach efficiencies of around 20% (Gawel 25; Rosfjord et al. 528). Efficiencies as low as this do not represent sufficient sensitivity for these photo-detectors to be effectively implemented in interplanetary communications.
The design of the MIT photo-detector is relatively simple from an engineering standpoint. This is especially true considering the high degree of efficiency it is capable of producing. Of course, the simplicity of the design belies the significant calibration the device requires: the nanowire must be cooled to almost absolute zero, the glass gap of the photon trap must be a very specific function of the wavelength of incoming photons, and the use of an anti-reflective coating on the surface of the device is critical. The design consists of a photon trap with a nanowire detector followed by a gap of glass, and then a mirrored surface. The nanowire is wrapped in a tight coil in order to maximize its absorption of incoming photons, and the nanowire is cooled to close to absolute zero, three degree Kelvin to be precise, which transforms the nanowire into a very small superconductor. As a superconductor, the nanowire responds in specific ways to photons that impact the nanowire allowing for detection. The photon trap and the mirrored surface help to contain any photons that aren't initially absorbed, until they eventually contact with the nanowire. The trap itself is a cavity between glass and a gold mirror that reflects those photons that would ordinarily pass straight through the detector or else be reflected away from it. As the mirror reflects the photons back through the cavity and trap, the photons eventually come into contact with the nanowire filament and are absorbed and detected (Gawel 25; Groshong).
The engineering genius of combining a superconductive nanowire with an optical cavity, mirrored surface, and anti-reflective coating on the incoming surface helps the photo-detector significantly minimize the optical losses that have plagued other photo-detectors, even ones that incorporated nanowires (Rosfjord et al. 528). When we look back at our original criteria for an effective photo-detector, we find that the MIT device meets nearly all of our ideal criteria. To refresh, the ideal photo-detector would be sensitive, able to operate at high speeds, minimize optical loss, and would come in an efficient packaging system. The MIT SNSPD is very sensitive, almost three times as efficient as the best photo-detector currently being produced. The detection efficiency for the device is 57% at 1550 nanometers, the wavelength at which broadband data transmissions are sent. At 1064 nanometers, the device is even more efficient: 67% absorption (Rosfjord et al. 528; Berggren and Kerman; Gawel 25). Contrasted with the best efficiency rates of other devices, roughly 20%, this is a remarkable enhancement.
Secondly, an ideal photo-detector should be able to operate at high speeds. In fact, at 1550 nanometers, this SNSPD boasted only a 3-nanosecond reset time between photon detection. The optical loss of the device has also been significantly reduced thanks to the presence of the photon trap, the anti-reflective coating, and other design considerations. Total detection jitter was quite minimal. The only issue that this device has is in its packaging. Because the nanowire needs to take on superconducting properties in other to efficiently register the incoming photons, the nanowire must be cooled to three degree Kelvin, very close to absolute zero. To do so requires an elaborate cryocooler that can reduce the temperature around the nanowire filament to this degree and then maintain that low temperature during operation of the photo-detector (Berggren and Kerman). While this is certainly not as ideal as a pocket-sized photo-detector that requires no intensive cooling, the impressive gains made in receiver efficiency more than make up for the less-than-ideal...
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now