For example, the most common instrument used in cloning today is known as a "micromanipulator," described by Baird as being an expensive machine that requires the use of a skilled technician to capture an egg cell under the microscope, insert a very fine needle to suck out its nucleus, and then use another needle to transfer a nucleus from the animal to be cloned. "This process is tricky and time consuming, and results are somewhere in the 25% range. In the new technique, egg cells are split in half under a microscope using a very thin blade. The halves are allowed to heal and then a dye is introduced to identify the halves containing the nucleus" (Baird, 2002, p. 20). The two halves of embryo that contain the original nucleus are then discarded, a processs that leaves the empty cytoplasts alone (these are the cells that do not contain the nucleus); in order to create the cloned embryo, a cell from an adult animal is fused first with one cytoplast, then another, by quickly introducing an electric current (Baird, 2002). According to this analyst, "This new method of cloning is much cheaper and can be performed without the need of a skilled technician. Another advantage is that this method will be relatively easy to automate, with the end result being mass produced cloned embryos. A major concern of this evolving cloning technique is that its cheapness (the electrofusion machine can be purchased for around $3,500) will allow increased attempts at human cloning" (Baird, 2002, p. 20).
Furthermore, cloning technology has been extended into some areas that appear to represent very real opportunities for improvement in the human condition. For instance, therapeutic cloning is used to clone embryos that are not used for reproductive purposes but as sources of cells, tissue and possibly organs for research, therapy and transplantation. "So-called therapeutic cloning," Harris notes, "involves the cloning of an embryo to make the cells, tissue or organs of that embryo compatible with a proposed recipient" (2004, p. 113). According to this author, stem cells represent the most likely application of therapeutic cloning in the foreseeable future; not surprisingly and notwithstanding federal government opposition, a massive research effort is underway to encourage the untold potential of this type of cloning research (Harris, 2004).
According to Baird, scientists have reported that the cloning of animals, particularly those that have been modified genetically, has a wide range of medical, agricultural, and industrial applications; for instance, if human genes were introduced into animals such as pigs, cows, and sheep, such transgenic animals would possess the capability to produce a wide variety of proteins and enzymes (Baird, 2002). "Large numbers of transgenic animals could produce vast quantities of drugs and other substances more efficiently and at a lower cost than is currently possible with today's bioengineering technology," Baird adds (2002, p. 20). Future innovations in cloning will ultimately result in other practical applications as well, including the potential genetically modified animals that could provide organs for human transplants, the mass production of healthier, more productive, disease resistant farm animals, more nutritious produce, and the development of crops that are disease, insect, and drought resistant (Baird, 2002).
Furthermore, future research and innovations in cloning may also contribute to disease treatments for humans by allowing scientists to reprogram cells. Through this research, for example, skin cells could be reprogrammed into the insulin producing cells in the pancreas; such skin cells would then be introduced into the pancreas of diabetic patients, a treatment that holds the promise of enabling them to produce their own insulin (Baird, 2002). Yet another example of the potential benefits to be derived from future therapeutic cloning involves Parkinson's disease, a degenerative disease affecting neurons. "Because neurons do not regenerate, cloning research could allow the reprogramming of cells into neurons to replace those damaged by the disease" (Baird, 2002, p. 20).
By using cloning techniques, human organ transplantation has the potential to become more successful, a feature that is especially important due to the ongoing chronic shortage of organs; today, just a small percentage of patients that stand to benefit from such transplants actually receive them, and there remain important issues of rejection mean the recipient is forced into a regime of drug taking to combat foreign body tissue rejection (Baird, 2002). In response, researchers are attempting to develop genetically modified pigs as an alternative source of organs; transplanting organs from one species to another is called xenotransplantation, and through nuclear transfer, transgenic...
Cloning has become a very contentious subject. The issue of cloning has moved from the scientific arena into the cultural, religious and ethical centers of debate, for good reasons. The scientific implications of cloning affects a wide range of social and ethical concerns. The theory of cloning questions many essential areas of ethical and philosophical concern about what human life is and raises the question whether we have the right
Congressional Ban on 'cloning'. The reality of cloning entered the world arena with a sheep named Dolly. Despite Dolly's fame, cloning techniques have existed since the 1970s, with a process called 'artificial twinning' which involved splitting a single ovum into what are considered new embryos and implanting them each into a female to be carried to term. The controversy of cloning has reached new heights as advances in medical technology
Using the same theme he moved from issue to issue. For example using the phrase "human dignity," he introduced the issue of Aids, human trafficking, human cloning, poverty, corruption, debt burden of the developing economies, ethnic and religious violence and democracy. This attachment of important values to various serious issues gave his speech a flow and a dramatic effect. Organization of his speech around these values helped him in
Ian Wimut and Keith Campbell could effectively clone two sheeps named Megan and Morag in July 1995 from the differentiated embryo cells. (History of Cloning) Dolly originated on July 5, 1996 as the first organism ever to be cloned from adult cells. Following the announcements for creation of Dolly by Ian Wilmut, an extensive debate on human cloning ethics emerged and that led President Clinton to propose for a five-year
Although these stem cells are only a few years old, they possess unlimited potential in terms of clinical research. Specifically, scientists are focusing their potential uses in transplant medicine in order to significantly reduce the level of both infections and overall organ rejection in organ transplant surgery. The potential for using stem cells is of vast clinical and medical importance. These cells could potentially allow scientists to learn what occurs
positive and negative impacts of DNA microarrays, Genetic engineering and cloning on the society, environment and the living beings. In the past years, people have heard much about the biological revolution and they have seen it coming too. Biology, with its modern discoveries, has not only influenced agriculture, medicine and economy but it has affected the nature of man as well. In today's era, where both, biology and technology are
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now