Evans eventually began altering the genetic material in the stem cells, creating mice that had genetic material from other creatures and could pass that material on to their offspring" (313). These findings, together with the research conducted separately by Capecchi and Smithies, enabled several teams of researchers to develop knockout mice (Lauerman 313).
In 2007, Evans received the Nobel Prize for medicine for these discoveries and the development of knockout mice that could be used to help scientists better understand and possibly cure diseases such as cystic fibrosis, heart disease, diabetes and cancer (Briton wins Nobel Prize 4). According to the editors of Environmental Health Perspectives (2005), the Comparative Mouse Genomics Centers Consortium (CMGCC) already has 54 transgenic or knockout mouse models developed at varying stages of construction and characterization (with regard to genotyping and phenoytping) for use as single nucleotide polymorphisms mice (Mouse models to improve understanding of the biological significance of human polymorphisms, 2005). Today, knockout mice are providing an increasing amount of valuable scientific information concerning the potential roles of genes in biological and behavioral processes and in the pathophysiology of many diseases which are discussed further below.
Mechanisms and Techniques of Knockout Mice Experiments.
Knockout mice are generally used to find out what a gene normally does; the mice are using for this purpose by observing the effects of functional elimination of certain genes on its functioning; however, just as the development of the knockout mice themselves was enormously challenging, this process is also not as straightforward as it sounds because the gene may be involved in a number of interacting biological processes (Barondes). As Bowers (2000) also points out, the fundamental requirements for creating such a transgenic or "knockout" mouse include:
Identifying and isolating the candidate gene of interest from its original organism (i.e., from the DNA of the organism's cells); and,
Selecting a suitable promoter that is placed adjacent to the transgene. The choice of promoter by the scientist depends on its location in the brain and the time in which (i.e., prenatal or postnatal) the transgene must be expressed (175).
While scientists are currently able to control the expression of the transgene through the careful selection of the promoter (promoters are stretches of DNA associated with a specific gene that guide the expression of the gene to specific areas in the brain and turn the expression of the gene 'on' either prenatally or postnatally), one limitation of the transgenic technique is its inability to target the integration of the transgene to its natural location on the chromosome (Bowers 175). As this author points out, "The site of integration is unique for each microinjection, and the transgene can be randomly inserted anywhere on any chromosome. This outcome can result in the disruption of a sequence of one of the host animal's own genes (i.e., known as insertional mutagenesis), producing changes in behavior that could mistakenly be attributed to the transgene itself" (Bowers 175).
In addition, scientists are still unable to control the number of integrated copies of the transgene, and the presence of additional copies of a gene does not necessarily indicate an increased overexpression of the gene being studied (Bowers 175). According to Bowers, "To control for this, the existence of more than one founder and consequently more than one line of mice for each transgene is desirable. The site of integration and level of expression will differ in each founder, and transgenic mice that descend from the same founder will share the same chromosomal integration site. If each transgenic line displays the same changes in behavior, it is more likely that it is attributable to the transgene" (175). Furthermore, the human body has also been shown to compensate for the loss of certain genes by increasing or decreasing the activities of related genes (Barones).
Despite these constraints to research, knockout mice have traditionally been used to study developmental processes and as models to study the etiology of human diseases and the environmental factors that may contribute to their incidence (Bowers 175). Some of the information that scientists have derived from their knockout experiments with mice have already yielded some impressive results. For example, a noteworthy discovery was made from the knockout of a gene that encodes a protein that can be divided to produce two different brain peptides (Barondes).
Termed "hypocretins" because they are manufactured in the hypothalamus, these two peptides are also called orexins (from the Greek word for "appetite" -- the same root that is used in "anorexia") in some cases because they are thought to increase appetite (120). In an effort to investigate the behavioral functions of the hypocretins, Chemelli, Sinton, Elmquist et al. (1999) knocked out the hypocretin...
The failure of human hamster fusion in the presence of anti-human izumo antibody clearly showed that Human izumo protein is essential for fertilization. This study however has raised some new questions. The difference in fertilization capacities between wild type and Izumo +/- type was not clearly discussed. Also, the fact that ICSI of izumo -/- produces twice as many litters as did the izumo +/- type implicates the possible role
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now